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Kata Kunci: ABSTRAK
Limit Fungsi, Epsilon-Delta, Artikel ini bertujuan untuk menguraikan secara mendalam konsep limit
Analisis Real, Pembuktian fungsi melalui pendekatan epsilon-delta (¢ — &§) serta menjembatani
Matematika, Kalkulus. pemahaman intuitif dari kalkulus ke pembuktian formal dalam analisis
real. Penulisan artikel ini menggunakan metode studi literatur dan
Keywords: analisis konseptual, dengan merujuk pada buku teks standar analisis real
Limit Function, Epsilon- dan literatur matematika yang relevan. Tahapan pembahasan meliputi
Delta, Real Analysis, Proof penyajian koneksi antara konsep intuitif dan definisi formal, analisis
in Mathematical, Calculus. mendalam terhadap setiap komponen definisie — &, dan diakhiri

dengan demonstrasi kerangka kerja pembuktian yang sistematis. Artikel

ini menunjukkan bahwa kesulitan yang sering dihadapi dalam

pembuktian formal dapat diatasi melalui pemahaman logis dan proses
dua tahap yaitu, analisis pendahuluan untuk menemukan nilai § yang tepat dan pembuktian formal untuk
validasi. Hasil dari pembahasan ini adalah sebuah panduan konseptual yang menegaskan bahwa penguasaan
pendekatan € — & merupakan kompetensi krusial untuk keberhasilan studi matematika tingkat lanjut,
khususnya dalam analisis real.

ABSTRACT

This article aims to elaborate on function limit through the epsilon-delta (e — &) approach and bridge the
intuitive understanding from calculus to formal proof in real analysis. The writing of this article uses the
method of literature study and conceptual analysis, by referring to standard textbooks of real analysis
and relevant mathematical literature. The stages of discussion include presenting the connection
between intuitive concepts and formal definitions, in-depth analysis of each component of the definition
of € — §, and concluding with a demonstration of a systematic proof framework. The article shows that
the difficulties often encountered in formal proofs can be overcome through logical understanding and a
two-stage process: preliminary analysis to find the right value of § and formal proof for validation. The
result of this discussion is a conceptual guide that confirms that mastery of the € — § approachiis a crucial
competence for the successful study of advanced mathematics, particularly in real analysis.

Pendahuluan

Konsep limit merupakan salah satu gagasan fundamental dalam kalkulus dan analisis
matematika. Sejarah perkembangannya berjalan panjang, dimulai dari metode
exhaustion yang digunakan oleh matematikawan Yunani kuno seperti Eudoxus dan
Archimedes untuk menghitung luas dan volume, meskipun pada saat itu belum ada
definisi limit yang formal (Boyer, 1949; Edwards, 1979). Gagasan intuitif mengenai proses
tak hingga dan kedekatan mulai berkembang lebih lanjut pada abad ke-17 dengan karya-
karya Isaac Newton dan Gottfried Wilhelm Leibniz, yang meletakkan dasar-dasar
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kalkulus diferensial dan integral. Namun, pendekatan mereka masih mengandalkan
intuisi dan belum memiliki dasar logika yang kokoh.

Pada tingkat pengantar, seperti dalam kalkulus, konsep limit seringkali diperkenalkan
secara intuitif. Limit fungsi f (x) ketika x mendekati c dikatakan sebagai L jika nilai f (x)
dapat dibuat sedekat mungkin dengan L dengan cara mengambil nilai x yang cukup
dekat dengan c, tetapi x = c (Purcell, Varberg, & Rigdon, 2007). Pemahaman intuitif ini,
meskipun berguna untuk aplikasi praktis dan pemecahan masalah awal, belum cukup
untuk membangun struktur matematika yang rigor.

Tantangan dalam membangun fondasi yang rigor ini tercermin langsung dalam
pengalaman belajar mahasiswa. Mata kuliah Analisis Real adalah satu mata kuliah wajib
yang dinilai sulit oleh sebagian besar mahasiswa (Abdussakir dkk., 2024). Salah satu
faktor utama kesulitan tersebut adalah keharusan untuk beralih dari pemahaman yang
sifatnya intuitif ke pembuktian yang sepenuhnya formal dan abstrak, yang menjadi inti
dari analisis real.

Peralihan ini menjadi semakin sulit karena perbedaan budaya belajar antara
pendidikan menengah dan perguruan tinggi. Sebuah penelitian menunjukkan bahwa
banyak mahasiswa di tahun pertama mengalami kesulitan karena terbiasa dengan
metode pengerjaan soal Ujian Nasional yang berorientasi pada hasil akhir dan
penggunaan "rumus cepat". Akibatnya, mahasiswa seringkali tidak mampu memberikan
uraian konseptual yang runtut ketika dihadapkan pada persoalan di tingkat universitas.

Kebutuhan akan definisi yang lebih presisi dan formal untuk mengatasi kesulitan
konseptual tersebut menjadi mendesak pada abad ke-19, terutama untuk mengatasi
paradoks dan kerancuan yang muncul dari penggunaan konsep tak hingga dan "kecil tak
terhingga" secara longgar. Augustin-Louis Cauchy adalah salah satu tokoh kunci yang
pertama kali berusaha memberikan definisi limit yang lebih ketat, diikuti oleh Karl
Weierstrass yang kemudian menyempurnakannya menjadi definisi e — § yang kita kenal
sekarang (Grabiner, 1981; Kleiner, 2001). Definisi ini menggantikan bahasa kualitatif
"mendekati" dengan pernyataan kuantitatif yang melibatkan bilangan real positif €
(epsilon) dan & (delta). Pemahaman konsep-konsep dasar analisis real seperti nilai
absolut, ketaksamaan, dan lingkungan (neighborhood) suatu titik menjadi prasyarat
untuk memahami definisi formal limit ini secara mendalam (Bartle & Sherbert, 2011).

Pembahasan

Menjembatani Intuisi Kalkulus ke Definisi Formal Analisis Real

Pemahaman intuitif tentang limit yang diperoleh dari kalkulus, seperti yang dijelaskan
oleh Purcell, Varberg, & Rigdon (2007), memberikan landasan awal yang penting. Intuisi
menyatakan bahwa f(x) mendekati L ketika x mendekati c. Namun, frasa "mendekati"
tidak memiliki makna matematis yang cukup presisi untuk digunakan dalam
pembuktian. Analisis real menuntut definisi yang mampu menangani semua kasus
secara konsisten dan memungkinkan verifikasi klaim limit secara objektif. Definisi (€, §)
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dari limit memenuhi kebutuhan ini dengan mengkuantifikasi sejauh mana "kedekatan"
tersebut.

Definisi Formal Limit Fungsi Menggunakan Epsilon-Delta (¢, §)

Definisi formal limit suatu fungsi adalah sebagai berikut: Misalkan fungsi f terdefinisi
pada suatu interval terbuka yang memuat ¢, kecuali mungkin di c itu sendiri. Kita katakan
bahwa limit dari f(x) ketika x mendekati ¢ adalah L, ditulis lim f(x) = L, jika untuk

X—C

setiap bilangan € > 0, terdapat bilangan § > 0 sedemikian sehingga jika 0<|x—
c| < 8, maka |[f(x) — L| < € (Bartle & Sherbert, 2011; Rudin, 1976). Berikut penjelasan
definisi Epsilon-Delta:

Interpretasi Epsilon (€)

Epsilon (¢) merepresentasikan suatu toleransi kesalahan atau jarak vertikal yang sangat
kecil (namun positif) dari nilai limit L. Kita ingin selisih antara f (x) dan L lebih kecil dari
€ ini.

Interpretasi Delta ()

Delta (&) merepresentasikan jarak horizontal yang sangat kecil (namun positif) dari titik
c. Pemilihan § bergantung pada € yang diberikan. Artinya, untuk setiap tantangan € yang
diberikan (seberapapun kecilnya), kita harus dapat menemukan § yang menjamin
bahwa jika x berada dalam jarak § dari ¢ (dan x # ¢), maka f (x) akan berada dalam jarak
€ dari L.

Kondisi0 < |x —c| <6

Bagian |x — c| < § berarti x berada dalam interval (¢ — §,c + §). Bagian 0 < |x — c|
(atau x # c¢) menekankan bahwa kita tidak tertarik pada nilai fungsi di x = c itu sendiri,
melainkan pada perilaku fungsi mendekati c.

Kondisi |f(x) — L| <€
Ini berarti f(x) berada dalam interval (L — €, L + €).

Secara geometris, definisi ini dapat divisualisasikan sebagai sebuah "permainan € — §".
Untuk setiap rentang horizontal (L — €, L + €) di sekitar L pada sumbu-y (seberapapun
sempitnya rentang tersebut), kita harus dapat menemukan rentang vertikal (¢ — §,c +
&) di sekitar ¢ pada sumbu-x sedemikian sehingga semua bagian dari grafik fungsi y =
f (x) untuk x dalam rentang vertikal ini (kecuali mungkin pada x = c) terletak di dalam
rentang horizontal tersebut.

Langkah-Langkah Umum dalam Pembuktian Limit Menggunakan € — &

Proses pembuktian limit menggunakan definisi (¢, §) umumnya melibatkan dua tahap
utama:

1. Analisis Pendahuluan (Pekerjaan Kasar/ Scratch Work): Tahap ini tidak termasuk
dalam pembuktian formal tetapi sangat krusial.

e Mulailah dengan ketaksamaan yang ingin dicapai: |f(x) — L| < e.
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e Manipulasi bentuk |f(x)—L| secara aljabar untuk memunculkan bentuk
|x —c|.

o Dari manipulasi tersebut, tentukan bagaimana § harus dipilih dalam kaitannya
dengan € agar ketaksamaan |f(x) — L| < € terpenuhi. Seringkali § akan menjadi
suatu fungsi dari €, atau 6 adalah nilai minimum dari beberapa ekspresi yang
melibatkan €.

2. Pembuktian Formal:

o Ambil sebarang e > 0. (Ini adalah langkah standar untuk memulai).

o Pilih § = [ekspresi dalam € yang ditemukan pada analisis pendahuluan]. Nyatakan
dengan jelas pilihan § ini. Jika ada batasan tambahan untuk § (misalnya § < 1),
nyatakan juga.

e Asumsikan 0 < |x —c| < §.

e Dengan menggunakan pilihan 6 dan asumsi 0 < |x — c| < §, tunjukkan melalui
langkah-langkah aljabar dan logis bahwa ketaksamaan |f (x) — L| < € benar-benar
terpenuhi.

Aplikasi dan Contoh Pembuktian Limit dengan € — &

Pada bagian ini, akan disajikan penerapan definisi € — 8§ untuk membuktikan
pernyataan limit pada beberapa jenis fungsi: linear, kuadratik, dan rasional. Setiap
contoh akan didahului oleh analisis pendahuluan untuk menemukan hubungan antara é
dan €, diikuti oleh pembuktian formal yang rigor.

1. Pembuktian Limit Fungsi Linear

Fungsi linear merupakan contoh paling dasar dan langsung untuk penerapan
definisi € — §.

Soal: Buktikan bahwa lirr%(Sx +1)=7.
xX—

Analisis Pendahuluan (Pekerjaan Kasar): Tujuan pembuktian adalah menunjukkan
bahwa untuk setiap € > 0, dapat ditemukan 6 > 0 sehinggajika 0 < |x — 2| < §, maka
|Bx+1)—7|<e.

1. Analisis dimulai dari kondisi akhir yang diinginkan: |(3x + 1) — 7| <.
2. Ekspresi di dalam nilai absolut disederhanakan: |3x — 6] < e.

3. Faktor 3 dikeluarkan: 3|x — 2| < e.

4. Darisini, dapat dilihat hubungan yang dicari: [x — 2| < 3e.

5. Bentuk |x — 2| ini cocok dengan bagian |x — c| dari definisi limit (di mana ¢ = 2).
Hal ini memberikan petunjuk untuk memilih nilai §. Maka, dapat dipilih § = 3e.
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Pembuktian Formal:
Akan dibuktikan bahwa 1irr%(3x +1)=7.
x—

Ambil sebarang € > 0.

Pilih 6 = 3€e. Karena € > 0, maka 6 juga pasti positif.

Sekarang, asumsikan x adalah bilangan yang memenuhi 0 < |x — 2| < §.

Perhatikan bahwa:

|(3x + 1) — 7| = |3x — 6] = 3|x — 2|. Berdasarkan asumsi |x — 2| < §, dan telah
dipilih § = 3¢, maka diperoleh:

3|x—2|<36=3(§)=6

Dengan demikian, telah ditunjukkan bahwa untuk setiap € > 0, terdapat § > 0 (yaitu
d = 3€¢) sedemikian sehingga jika 0<|x—2|<§, maka |Bx+1)—-7|<e.
Berdasarkan definisi limit, terbukti bahwa lirr%(3x +1)Bx+1)=7.m

xX—

2. Pembuktian Limit Fungsi Kuadratik

Pembuktian untuk fungsi non-linear seperti fungsi kuadratik sedikit lebih kompleks
karena melibatkan faktor yang tidak konstan.

Soal: Buktikan bahwa lin% x%=09.
xX—

Analisis Pendahuluan (Pekerjaan Kasar): Tujuan pembuktian: Jika 0 < |x — 3| < 4,
maka |x2 — 9| < e.

1. Analisis dimulai dari [x? — 9| < e.
2. Ekspresi difaktorkan: |(x —3)(x + 3)| = |x — 3||x + 3| < €.

3. Padatahap ini, terdapat sebuah tantangan. Faktor |x + 3| tidak konstan, nilainya
bergantung pada x. Nilai tersebut perlu dibatasi.

4. ldenya adalah hanya meninjau nilai x yang "dekat" dengan 3. Jaraknya dapat
dibatasi dengan membuat asumsi awal untuk 6. Misalkan, dipastikan ¢ tidak lebih
dari 1, yaitué < 1.

5. Jika |x —3] <1, maka —1 <x —3 < 1. Menambahkan 6 pada semua sisi
memberikan 5 < x + 3 < 7. Ini berarti nilai | x + 3 | pasti kurang dari 7.

6. Dengan batasan ini, analisis dapat dilanjutkan dari langkah 3:
|x —=3||x + 3| <l x—3|-7.
7. Dikehendakiagar|l x — 3| : 7 < €, yang berarti |[x — 3| < 7e.

8. Dengan demikian, terdapat dua syarat untuké:8 <1 dan & < 7e. Untuk
memenuhi keduanya, dipilih § sebagai nilai yang lebih kecil dari keduanya, yaitu
6 = min(1,7¢).
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Pembuktian Formal:
Akan dibuktikan bahwa 1irr§ x?=09.
xX—

Ambil sebarang € > 0.
Pilih § = min(1,7¢). Pemilihan ini memastikan § > 0.
Sekarang, diasumsikan x adalah bilangan yang memenuhi 0 < |x — 3| < 4.
Karena § <1, asumsi |x — 3| < § juga berarti |x — 3| < 1. Dari ketaksamaan ini,
diperoleh —1 < x — 3 < 1, yang mengimplikasikan 2 < x < 4.
Akibatnya, 5 < x + 3 < 7, sehingga dapat disimpulkan bahwa |x + 3| < 7.
Selanjutnya, perhatikan ekspresi limit:
|x? =9 = |(x = 3)(x + 3)| = |x — 3||x + 3|

Telah diketahui bahwa |x + 3| < 7 dan berdasarkan asumsi |x — 3| < §. Maka:

lx =3||x+3] <87
Karena juga telah dipilih § < 7¢,makaé -7 < (7€) - 7 = €.
Dengan menggabungkan ketaksamaan di atas, diperoleh:

x2—-9|<6-7<¢€
Dengan demikian, telah ditunjukkan bahwa untuk setiap € > 0, terdapat § > 0 (yaitu
& = min(1,7¢)) sedemikian sehingga jika 0 <|x—3| <&, maka|x?—9|<e.
Berdasarkan definisi limit, terbukti bahwa }Cl_rg x>=9. m

3. Pembuktian Limit Fungsi Rasional

Metode untuk membatasi faktor non-konstan juga sangat berguna untuk fungsi
rasional, di mana penyebutnya perlu dibatasi agar tidak terlalu dekat dengan nol.

Soal: Buktikan bahwa limﬂ = l.
x-1x+3 2

Analisis Pendahuluan (Pekerjaan Kasar):

Tujuan pembuktian: Jika 0 < |[x — 1| < §, maka ;C_: - %| <€

. . . . . x+1 1
1. Analisis dimulai dari |— ——| <Ee.
x+3 2

2. Ekspresi disederhanakan dengan menyamakan penyebut:

2x+1) —1(x + 3) _|2x+2—x—3|_| x—1 _| x—1 -
2(x +3) B 2(x +3) 12+ 3 [2(x+3) €

3. Seperti sebelumnya, terdapat faktor yang bergantung pada x, yaitu |2(x + 3)]|.
Perlu dipastikan penyebut ini tidak terlalu kecil.

4. Nilai 6 kembali dibatasi dengan asumsi awal, § < 1.
5. Jika|x — 1| <1,maka—-1<x—1<1,yangberarti0 < x < 2.

6. Akibatnya, untuk penyebut: 3 < x + 3 < 5, sehingga 6 < 2(x + 3) < 10.
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7. Yang terpenting di sini adalah batas bawahnya: |2(x + 3)| > 6. Ini berarti

1 1
[2(x+3)] 6"
. |x—1] lx—1]
8. Kembali ke langkah 2: ——— < —.
12Ce+3)| 6

9. Dikehendaki agarl%1| < €, yang berarti |[x — 1| < 6e.

10. Terdapat dua syarat: § < 1 dan § < 6¢€. Maka dipilih § = min(1,6¢).

Pembuktian Formal:

Akan dibuktikan bahwa lim == = .

Ambil sebarang € > 0.

Pilih § = min(1,6€). Ini memastikan § > 0.

Sekarang, asumsikan x adalah bilangan yang memenuhi 0 < |x — 1| < §.

Karena 6 <1, maka |x — 1| < 1, yang berarti 0 < x < 2. Untuk penyebutnya, ini
mengimplikasikan 3 < x + 3 < 5, sehingga |2(x + 3)| > 6. Akibatnya, :

[2(x+3)| < 6
Selanjutnya, ekspresi limit dimanipulasi, perhatikan bahwa:

2+ 1) — (x+3) o x—=1]
2(x +3) 2+ 3)°

|x+1 1|_
x+3 2l

Dengan menggunakan hasil pembatasan penyebut dan asumsi [x — 1| < §:

lx—1] lx—1| _ &
|2(x+3)) s <%

Karena juga telah dipilih § < 6¢, maka% < % = €.
Dengan demikian, telah ditunjukkan:

|x +1 1 <

x+3 21°°
Jadi, untuk setiap € > 0, terdapat § > 0 sedemikian sehingga jika 0 < |x — 1| < §,
maka |22 — 2| < €. Berdasarkan definisi limit, terbukti bahwa limZ: =1 u

x+3 2 x—1Xx+3 2
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Kesimpulan dan Saran

Kesimpulan

Konsep limit merupakan pilar fundamental yang menopang struktur analisis real.
Pendekatan epsilon-delta (e — §) hadir sebagai alat esensial yang memberikan dasar
logika yang kokoh dan presisi matematis untuk konsep tersebut. Artikel ini telah
menguraikan bagaimana pendekatan € — § secara efektif menjembatani pemahaman
limit yang bersifat intuitif sebagaimana yang sering diperkenalkan dalam kalkulus
dengan tuntutan pembuktian formal yang rigor dalam analisis real.

Melalui pembahasan dan contoh-contoh yang disajikan, dapat disimpulkan bahwa
proses pembuktian limit menggunakan definisi € — § dapat disistematisasi menjadi dua
tahap utama yaitu, analisis pendahuluan untuk menemukan hubungan antara 6 dan e,
serta pembuktian formal untuk memvalidasi hubungan tersebut secara logis. Telah
ditunjukkan pula bahwa metode ini bersifat robust dan dapat diaplikasikan pada
berbagai jenis fungsi, mulai dari fungsi linear yang sederhana hingga fungsi kuadratik
dan rasional yang memerlukan strategi pembatasan tambahan. Penguasaan definisi
limit secara formal bukan hanya sebuah tujuan akhir, melainkan sebuah gerbang krusial
untuk memahami konsep-konsep analisis yang lebih lanjut seperti kekontinuan, turunan,
dan integral secara mendalam dan akurat.

Saran

Berdasarkan pembahasan dan kesimpulan yang telah diuraikan, berikut adalah
beberapa saran yang dapat diajukan:

Bagi Mahasiswa dan Pembelajar

Disarankan untuk tidak hanya menghafal langkah-langkah pembuktian, tetapi fokus
pada pemahaman logika di balik definisi € — 6. Menggunakan visualisasi grafis untuk
menginterpretasikan makna € dan § dapat sangat membantu dalam membangun intuisi
yang benar. Latihan yang konsisten pada berbagai tipe fungsi akan mempertajam
kemampuan analisis dan pembuktian.

Bagi Pengajar

Dalam proses pembelajaran, disarankan untuk secara eksplisit mendedikasikan waktu
untuk menjelaskan transisi dari konsep limit yang intuitif ke definisi yang formal.
Mendemonstrasikan tahap "analisis pendahuluan' atau scratch work secara terbuka di
depan kelas dapat membantu mahasiswa memahami bagaimana cara "menemukan" &
yang tepat, sehingga proses pembuktian tidak terkesan seperti "trik sulap".

Untuk Penelitian Lanjutan

Penelitian di masa depan dapat diarahkan pada studi komparatif mengenai efektivitas
berbagai pendekatan pedagogis dalam mengajarkan konsep € — 4. Selain itu, analisis
mengenai kesulitan-kesulitan spesifik mahasiswa Indonesia dalam memahami konsep ini
dapat menjadi area penelitian yang menarik untuk menghasilkan modul pembelajaran
yang lebih kontekstual dan efektif.
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