
Maliki Interdisciplinary Journal (MIJ)         eISSN: 3024-8140 

Volume 3, Issue June, 2025 pp. 715-723     http://urj.uin-malang.ac.id/index.php/mij/index 
 

 

 

 

This is an open access article under the CC BY-NC-SA license. 

Copyright © 2023 by Author. Published by Universitas Islam Negeri Maulana Malik Ibrahim Malang. 

 

Pendekatan Epsilon-Delta terhadap konsep dan 
pembuktian limit dalam analisis real 

 

Ahmad Maulana Firmansyah 
Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang 
e-mail: ahmadmaulanafirman2@gmail.com  
 

A B S T R A K 

Artikel ini bertujuan untuk menguraikan secara mendalam konsep limit 
fungsi melalui pendekatan epsilon-delta (𝜖 − 𝛿) serta menjembatani 
pemahaman intuitif dari kalkulus ke pembuktian formal dalam analisis 
real. Penulisan artikel ini menggunakan metode studi literatur dan 
analisis konseptual, dengan merujuk pada buku teks standar analisis real 
dan literatur matematika yang relevan. Tahapan pembahasan meliputi 
penyajian koneksi antara konsep intuitif dan definisi formal, analisis 
mendalam terhadap setiap komponen definisi 𝜖 − 𝛿, dan diakhiri 
dengan demonstrasi kerangka kerja pembuktian yang sistematis. Artikel 
ini menunjukkan bahwa kesulitan yang sering dihadapi dalam 
pembuktian formal dapat diatasi melalui pemahaman logis dan proses 

dua tahap yaitu, analisis pendahuluan untuk menemukan nilai 𝛿 yang tepat dan pembuktian formal untuk 
validasi. Hasil dari pembahasan ini adalah sebuah panduan konseptual yang menegaskan bahwa penguasaan 
pendekatan 𝜖 − 𝛿 merupakan kompetensi krusial untuk keberhasilan studi matematika tingkat lanjut, 
khususnya dalam analisis real. 

A B S T R A C T 

This article aims to elaborate on function limit through the epsilon-delta (𝜖 − 𝛿) approach and bridge the 
intuitive understanding from calculus to formal proof in real analysis. The writing of this article uses the 
method of literature study and conceptual analysis, by referring to standard textbooks of real analysis 
and relevant mathematical literature. The stages of discussion include presenting the connection 
between intuitive concepts and formal definitions, in-depth analysis of each component of the definition 
of 𝜖 − 𝛿, and concluding with a demonstration of a systematic proof framework. The article shows that 
the difficulties often encountered in formal proofs can be overcome through logical understanding and a 
two-stage process: preliminary analysis to find the right value of 𝛿 and formal proof for validation. The 
result of this discussion is a conceptual guide that confirms that mastery of the 𝜖 − 𝛿 approach is a crucial 
competence for the successful study of advanced mathematics, particularly in real analysis. 

 

Pendahuluan  

Konsep limit merupakan salah satu gagasan fundamental dalam kalkulus dan analisis 
matematika. Sejarah perkembangannya berjalan panjang, dimulai dari metode 
exhaustion yang digunakan oleh matematikawan Yunani kuno seperti Eudoxus dan 
Archimedes untuk menghitung luas dan volume, meskipun pada saat itu belum ada 
definisi limit yang formal (Boyer, 1949; Edwards, 1979). Gagasan intuitif mengenai proses 
tak hingga dan kedekatan mulai berkembang lebih lanjut pada abad ke-17 dengan karya-
karya Isaac Newton dan Gottfried Wilhelm Leibniz, yang meletakkan dasar-dasar 
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kalkulus diferensial dan integral. Namun, pendekatan mereka masih mengandalkan 
intuisi dan belum memiliki dasar logika yang kokoh. 

Pada tingkat pengantar, seperti dalam kalkulus, konsep limit seringkali diperkenalkan 
secara intuitif. Limit fungsi 𝑓(𝑥) ketika 𝑥 mendekati 𝑐 dikatakan sebagai 𝐿 jika nilai 𝑓(𝑥) 
dapat dibuat sedekat mungkin dengan 𝐿 dengan cara mengambil nilai 𝑥 yang cukup 
dekat dengan 𝑐, tetapi 𝑥 = 𝑐 (Purcell, Varberg, & Rigdon, 2007). Pemahaman intuitif ini, 
meskipun berguna untuk aplikasi praktis dan pemecahan masalah awal, belum cukup 
untuk membangun struktur matematika yang rigor. 

Tantangan dalam membangun fondasi yang rigor ini tercermin langsung dalam 
pengalaman belajar mahasiswa. Mata kuliah Analisis Real adalah satu mata kuliah wajib 
yang dinilai sulit oleh sebagian besar mahasiswa (Abdussakir dkk., 2024). Salah satu 
faktor utama kesulitan tersebut adalah keharusan untuk beralih dari pemahaman yang 
sifatnya intuitif ke pembuktian yang sepenuhnya formal dan abstrak, yang menjadi inti 
dari analisis real. 

Peralihan ini menjadi semakin sulit karena perbedaan budaya belajar antara 
pendidikan menengah dan perguruan tinggi. Sebuah penelitian menunjukkan bahwa 
banyak mahasiswa di tahun pertama mengalami kesulitan karena terbiasa dengan 
metode pengerjaan soal Ujian Nasional yang berorientasi pada hasil akhir dan 
penggunaan "rumus cepat". Akibatnya, mahasiswa seringkali tidak mampu memberikan 
uraian konseptual yang runtut ketika dihadapkan pada persoalan di tingkat universitas. 

Kebutuhan akan definisi yang lebih presisi dan formal untuk mengatasi kesulitan 
konseptual tersebut menjadi mendesak pada abad ke-19, terutama untuk mengatasi 
paradoks dan kerancuan yang muncul dari penggunaan konsep tak hingga dan "kecil tak 
terhingga" secara longgar. Augustin-Louis Cauchy adalah salah satu tokoh kunci yang 
pertama kali berusaha memberikan definisi limit yang lebih ketat, diikuti oleh Karl 
Weierstrass yang kemudian menyempurnakannya menjadi definisi 𝜖 − 𝛿 yang kita kenal 
sekarang (Grabiner, 1981; Kleiner, 2001). Definisi ini menggantikan bahasa kualitatif 
"mendekati" dengan pernyataan kuantitatif yang melibatkan bilangan real positif 𝜖 
(epsilon) dan 𝛿 (delta). Pemahaman konsep-konsep dasar analisis real seperti nilai 
absolut, ketaksamaan, dan lingkungan (neighborhood) suatu titik menjadi prasyarat 
untuk memahami definisi formal limit ini secara mendalam (Bartle & Sherbert, 2011). 

Pembahasan  

Menjembatani Intuisi Kalkulus ke Definisi Formal Analisis Real 

Pemahaman intuitif tentang limit yang diperoleh dari kalkulus, seperti yang dijelaskan 
oleh Purcell, Varberg, & Rigdon (2007), memberikan landasan awal yang penting. Intuisi 
menyatakan bahwa 𝒇(𝒙) mendekati 𝑳 ketika 𝒙 mendekati 𝒄. Namun, frasa "mendekati" 
tidak memiliki makna matematis yang cukup presisi untuk digunakan dalam 
pembuktian. Analisis real menuntut definisi yang mampu menangani semua kasus 
secara konsisten dan memungkinkan verifikasi klaim limit secara objektif. Definisi (𝝐, 𝜹) 
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dari limit memenuhi kebutuhan ini dengan mengkuantifikasi sejauh mana "kedekatan" 
tersebut. 

Definisi Formal Limit Fungsi Menggunakan Epsilon-Delta (𝝐, 𝜹)  

Definisi formal limit suatu fungsi adalah sebagai berikut: Misalkan fungsi 𝒇 terdefinisi 
pada suatu interval terbuka yang memuat 𝒄, kecuali mungkin di 𝒄 itu sendiri. Kita katakan 
bahwa limit dari 𝒇(𝒙) ketika 𝒙 mendekati 𝒄 adalah 𝑳, ditulis 𝐥𝐢𝐦

𝒙→𝒄
 𝒇(𝒙) = 𝑳, jika untuk 

setiap bilangan 𝝐 > 𝟎, terdapat bilangan 𝜹 > 𝟎 sedemikian sehingga jika          𝟎 < |𝒙 −
𝒄| < 𝜹, maka |𝒇(𝒙) − 𝑳| < 𝝐 (Bartle & Sherbert, 2011; Rudin, 1976). Berikut penjelasan 
definisi Epsilon-Delta: 

Interpretasi Epsilon (𝜖)  

Epsilon (𝜖) merepresentasikan suatu toleransi kesalahan atau jarak vertikal yang sangat 
kecil (namun positif) dari nilai limit 𝐿. Kita ingin selisih antara 𝑓(𝑥) dan 𝐿 lebih kecil dari 
𝜖 ini. 

Interpretasi Delta (𝛿)  

Delta (𝛿) merepresentasikan jarak horizontal yang sangat kecil (namun positif) dari titik 
𝑐. Pemilihan 𝛿 bergantung pada 𝜖 yang diberikan. Artinya, untuk setiap tantangan 𝜖 yang 
diberikan (seberapapun kecilnya), kita harus dapat menemukan 𝛿 yang menjamin 
bahwa jika 𝑥 berada dalam jarak 𝛿 dari 𝑐 (dan 𝑥 ≠ 𝑐), maka 𝑓(𝑥) akan berada dalam jarak 
𝜖 dari 𝐿. 

Kondisi 0 < |𝑥 − 𝑐| < 𝛿 

Bagian |𝑥 − 𝑐| < 𝛿 berarti 𝑥 berada dalam interval (𝑐 − 𝛿, 𝑐 + 𝛿). Bagian 0 < |𝑥 − 𝑐| 
(atau 𝑥 ≠ 𝑐) menekankan bahwa kita tidak tertarik pada nilai fungsi di 𝑥 = 𝑐 itu sendiri, 
melainkan pada perilaku fungsi mendekati 𝑐. 

Kondisi |𝑓(𝑥) − 𝐿| < 𝜖 

Ini berarti 𝑓(𝑥) berada dalam interval (𝐿 − 𝜖, 𝐿 + 𝜖). 

Secara geometris, definisi ini dapat divisualisasikan sebagai sebuah "permainan 𝜖 − 𝛿". 
Untuk setiap rentang horizontal (𝐿 − 𝜖, 𝐿 + 𝜖) di sekitar 𝐿 pada sumbu-𝑦 (seberapapun 
sempitnya rentang tersebut), kita harus dapat menemukan rentang vertikal (𝑐 − 𝛿, 𝑐 +
𝛿) di sekitar 𝑐 pada sumbu-𝑥 sedemikian sehingga semua bagian dari grafik fungsi 𝑦 =
𝑓(𝑥) untuk 𝑥 dalam rentang vertikal ini (kecuali mungkin pada 𝑥 = 𝑐) terletak di dalam 
rentang horizontal tersebut. 

Langkah-Langkah Umum dalam Pembuktian Limit Menggunakan 𝝐 − 𝜹 

Proses pembuktian limit menggunakan definisi (𝜖, 𝛿) umumnya melibatkan dua tahap 
utama: 

1. Analisis Pendahuluan (Pekerjaan Kasar/ Scratch Work): Tahap ini tidak termasuk 

dalam pembuktian formal tetapi sangat krusial. 

• Mulailah dengan ketaksamaan yang ingin dicapai: |𝑓(𝑥) − 𝐿| < 𝜖. 
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• Manipulasi bentuk |𝑓(𝑥) − 𝐿| secara aljabar untuk memunculkan bentuk                      
|𝑥 − 𝑐|. 

• Dari manipulasi tersebut, tentukan bagaimana 𝛿 harus dipilih dalam kaitannya 
dengan 𝜖 agar ketaksamaan |𝑓(𝑥) − 𝐿| < 𝜖 terpenuhi. Seringkali 𝛿 akan menjadi 
suatu fungsi dari 𝜖, atau 𝛿 adalah nilai minimum dari beberapa ekspresi yang 
melibatkan 𝜖. 

2. Pembuktian Formal: 

• Ambil sebarang 𝜖 > 0. (Ini adalah langkah standar untuk memulai). 

• Pilih 𝛿 = [ekspresi dalam 𝜖 yang ditemukan pada analisis pendahuluan]. Nyatakan 
dengan jelas pilihan 𝛿 ini. Jika ada batasan tambahan untuk 𝛿 (misalnya 𝛿 ≤ 1), 
nyatakan juga. 

• Asumsikan 0 < |𝑥 − 𝑐| < 𝛿. 

• Dengan menggunakan pilihan 𝛿 dan asumsi 0 < |𝑥 − 𝑐| < 𝛿, tunjukkan melalui 
langkah-langkah aljabar dan logis bahwa ketaksamaan |𝑓(𝑥) − 𝐿| < 𝜖 benar-benar 
terpenuhi. 

Aplikasi dan Contoh Pembuktian Limit dengan 𝝐 − 𝜹 

Pada bagian ini, akan disajikan penerapan definisi 𝝐 − 𝜹 untuk membuktikan 
pernyataan limit pada beberapa jenis fungsi: linear, kuadratik, dan rasional. Setiap 
contoh akan didahului oleh analisis pendahuluan untuk menemukan hubungan antara 𝜹 
dan 𝝐, diikuti oleh pembuktian formal yang rigor. 

1. Pembuktian Limit Fungsi Linear 

Fungsi linear merupakan contoh paling dasar dan langsung untuk penerapan 
definisi 𝜖 − 𝛿. 

Soal: Buktikan bahwa lim
𝑥→2

(3𝑥 + 1) = 7. 

Analisis Pendahuluan (Pekerjaan Kasar): Tujuan pembuktian adalah menunjukkan 
bahwa untuk setiap 𝜖 > 0, dapat ditemukan 𝛿 > 0 sehingga jika 0 < |𝑥 − 2| < 𝛿, maka 
|(3𝑥 + 1) − 7| < 𝜖. 

1. Analisis dimulai dari kondisi akhir yang diinginkan: |(3𝑥 + 1) − 7| < 𝜖. 

2. Ekspresi di dalam nilai absolut disederhanakan: |3𝑥 − 6| < 𝜖. 

3. Faktor 3 dikeluarkan: 3|𝑥 − 2| < 𝜖. 

4. Dari sini, dapat dilihat hubungan yang dicari: |𝑥 − 2| < 3𝜖. 

5. Bentuk |𝑥 − 2| ini cocok dengan bagian |𝑥 − 𝑐| dari definisi limit (di mana 𝑐 = 2). 
Hal ini memberikan petunjuk untuk memilih nilai 𝛿. Maka, dapat dipilih 𝛿 = 3𝜖. 
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Pembuktian Formal: 
Akan dibuktikan bahwa lim

𝑥→2
(3𝑥 + 1) = 7.  

Ambil sebarang 𝜖 > 0.  
Pilih 𝛿 = 3𝜖. Karena 𝜖 > 0, maka 𝛿 juga pasti positif.  
Sekarang, asumsikan 𝑥 adalah bilangan yang memenuhi 0 < |𝑥 − 2| < 𝛿. 
Perhatikan bahwa: 
|(3𝑥 + 1) − 7| = |3𝑥 − 6| = 3|𝑥 − 2|. Berdasarkan asumsi |𝑥 − 2| < 𝛿, dan telah 
dipilih 𝛿 = 3𝜖, maka diperoleh: 

3|𝑥 − 2| < 3𝛿 = 3 (
𝜖

3
) = 𝜖 

Dengan demikian, telah ditunjukkan bahwa untuk setiap 𝜖 > 0, terdapat 𝛿 > 0 (yaitu 
𝛿 = 3𝜖) sedemikian sehingga jika 0 < |𝑥 − 2| < 𝛿, maka |(3𝑥 + 1) − 7| < 𝜖. 
Berdasarkan definisi limit, terbukti bahwa lim

𝑥→2
(3𝑥 + 1)(3𝑥 + 1) = 7. ∎ 

 
2. Pembuktian Limit Fungsi Kuadratik 

Pembuktian untuk fungsi non-linear seperti fungsi kuadratik sedikit lebih kompleks 
karena melibatkan faktor yang tidak konstan. 

Soal: Buktikan bahwa lim
𝑥→3

𝑥2 = 9. 

Analisis Pendahuluan (Pekerjaan Kasar): Tujuan pembuktian: Jika 0 < |𝑥 − 3| < 𝛿, 
maka |𝑥2 − 9| < 𝜖. 

1. Analisis dimulai dari |𝑥2 − 9| < 𝜖. 

2. Ekspresi difaktorkan: |(𝑥 − 3)(𝑥 + 3)| = |𝑥 − 3||𝑥 + 3| < 𝜖. 

3. Pada tahap ini, terdapat sebuah tantangan. Faktor |𝑥 + 3| tidak konstan, nilainya 
bergantung pada 𝑥. Nilai tersebut perlu dibatasi. 

4. Idenya adalah hanya meninjau nilai 𝑥 yang "dekat" dengan 3. Jaraknya dapat 
dibatasi dengan membuat asumsi awal untuk 𝛿. Misalkan, dipastikan 𝛿 tidak lebih 
dari 1, yaitu 𝛿 ≤ 1. 

5. Jika |𝑥 − 3| < 1, maka −1 < 𝑥 − 3 < 1. Menambahkan 6 pada semua sisi 
memberikan 5 < 𝑥 + 3 < 7. Ini berarti nilai ∣ 𝑥 + 3 ∣ pasti kurang dari 7. 

6. Dengan batasan ini, analisis dapat dilanjutkan dari langkah 3: 

|𝑥 − 3||𝑥 + 3| <∣ 𝑥 − 3| ⋅ 7. 

7. Dikehendaki agar|∣ 𝑥 − 3| ⋅ 7 < 𝜖, yang berarti |𝑥 − 3| < 7𝜖. 

8. Dengan demikian, terdapat dua syarat untuk 𝛿: 𝛿 ≤ 1 dan 𝛿 ≤ 7𝜖. Untuk 
memenuhi keduanya, dipilih 𝛿 sebagai nilai yang lebih kecil dari keduanya, yaitu 
𝛿 = 𝑚𝑖𝑛(1,7𝜖). 
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Pembuktian Formal: 
Akan dibuktikan bahwa lim

𝑥→3
𝑥2 = 9.  

Ambil sebarang 𝜖 > 0.  
Pilih 𝛿 = 𝑚𝑖𝑛(1,7𝜖). Pemilihan ini memastikan 𝛿 > 0.  
Sekarang, diasumsikan 𝑥 adalah bilangan yang memenuhi 0 < |𝑥 − 3| < 𝛿.  
Karena 𝛿 ≤ 1, asumsi |𝑥 − 3| < 𝛿 juga berarti |𝑥 − 3| < 1. Dari ketaksamaan ini, 
diperoleh −1 < 𝑥 − 3 < 1, yang mengimplikasikan 2 < 𝑥 < 4.  
Akibatnya, 5 < 𝑥 + 3 < 7, sehingga dapat disimpulkan bahwa |𝑥 + 3| < 7. 
Selanjutnya, perhatikan ekspresi limit:  

|𝑥2 − 9| = |(𝑥 − 3)(𝑥 + 3)| = |𝑥 − 3||𝑥 + 3| 
Telah diketahui bahwa |𝑥 + 3| < 7 dan berdasarkan asumsi |𝑥 − 3| < 𝛿. Maka: 

|𝑥 − 3||𝑥 + 3| < 𝛿 ⋅ 7 
Karena juga telah dipilih 𝛿 ≤ 7𝜖, maka 𝛿 ⋅ 7 ≤ (7𝜖) ⋅ 7 = 𝜖.  
Dengan menggabungkan ketaksamaan di atas, diperoleh: 

|𝑥2 − 9| < 𝛿 ⋅ 7 ≤ 𝜖 
Dengan demikian, telah ditunjukkan bahwa untuk setiap 𝜖 > 0, terdapat 𝛿 > 0 (yaitu 
𝛿 = 𝑚𝑖𝑛(1,7𝜖)) sedemikian sehingga jika 0 < |𝑥 − 3| < 𝛿, maka |𝑥2 − 9| < 𝜖. 
Berdasarkan definisi limit, terbukti bahwa lim

𝑥→3
𝑥2 = 9.  ∎ 

 
3. Pembuktian Limit Fungsi Rasional 

Metode untuk membatasi faktor non-konstan juga sangat berguna untuk fungsi 
rasional, di mana penyebutnya perlu dibatasi agar tidak terlalu dekat dengan nol. 

Soal: Buktikan bahwa lim
𝑥→1

𝑥+1

𝑥+3
=

1

2
. 

 

Analisis Pendahuluan (Pekerjaan Kasar):  

Tujuan pembuktian: Jika 0 < |𝑥 − 1| < 𝛿, maka |
𝑥+1

𝑥+3
−

1

2
| < 𝜖. 

1. Analisis dimulai dari |
𝑥+1

𝑥+3
−

1

2
| < 𝜖. 

2. Ekspresi disederhanakan dengan menyamakan penyebut:  

|
2(𝑥 + 1) − 1(𝑥 + 3)

2(𝑥 + 3)
| = |

2𝑥 + 2 − 𝑥 − 3

2(𝑥 + 3)
| = |

𝑥 − 1

2(𝑥 + 3)
| = |

𝑥 − 1

2(𝑥 + 3)
| < 𝜖 

3. Seperti sebelumnya, terdapat faktor yang bergantung pada 𝑥, yaitu |2(𝑥 + 3)|. 
Perlu dipastikan penyebut ini tidak terlalu kecil. 

4. Nilai 𝛿 kembali dibatasi dengan asumsi awal, 𝛿 ≤ 1. 

5. Jika |𝑥 − 1| < 1, maka −1 < 𝑥 − 1 < 1, yang berarti 0 < 𝑥 < 2. 

6. Akibatnya, untuk penyebut: 3 < 𝑥 + 3 < 5, sehingga 6 < 2(𝑥 + 3) < 10. 
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7. Yang terpenting di sini adalah batas bawahnya: |2(𝑥 + 3)| > 6. Ini berarti 
1

|2(𝑥+3)|
<

1

6
. 

8. Kembali ke langkah 2: 
|𝑥−1|

|2(𝑥+3)|
<

|𝑥−1|

6
. 

9. Dikehendaki agar 
|𝑥−1|

6
< 𝜖, yang berarti |𝑥 − 1| < 6𝜖. 

10. Terdapat dua syarat: 𝛿 ≤ 1 dan 𝛿 ≤ 6𝜖. Maka dipilih 𝛿 = 𝑚𝑖𝑛(1,6𝜖). 

Pembuktian Formal: 

Akan dibuktikan bahwa lim
𝑥→1

𝑥+1

𝑥+3
=

1

2
.  

Ambil sebarang 𝜖 > 0.  

Pilih 𝛿 = 𝑚𝑖𝑛(1,6𝜖). Ini memastikan 𝛿 > 0.  

Sekarang, asumsikan 𝑥 adalah bilangan yang memenuhi 0 < |𝑥 − 1| < 𝛿.  

Karena 𝛿 ≤ 1, maka |𝑥 − 1| < 1, yang berarti 0 < 𝑥 < 2. Untuk penyebutnya, ini 

mengimplikasikan 3 < 𝑥 + 3 < 5, sehingga |2(𝑥 + 3)| > 6. Akibatnya, 
1

|2(𝑥+3)|
<

1

6
.  

Selanjutnya, ekspresi limit dimanipulasi, perhatikan bahwa: 

|
𝑥 + 1

𝑥 + 3
−

1

2
| = |

2(𝑥 + 1) − (𝑥 + 3)

2(𝑥 + 3)
| =

|𝑥 − 1|

|2(𝑥 + 3)|
.  

Dengan menggunakan hasil pembatasan penyebut dan asumsi |𝑥 − 1| < 𝛿: 

|𝑥−1|

|2(𝑥+3)|
<

|𝑥−1|

6
<

𝛿

6
  

Karena juga telah dipilih 𝛿 ≤ 6𝜖, maka 
𝛿

6
≤

6𝜖

6
= 𝜖. 

Dengan demikian, telah ditunjukkan: 

|
𝑥 + 1

𝑥 + 3
−

1

2
| < 𝜖. 

Jadi, untuk setiap 𝜖 > 0, terdapat 𝛿 > 0 sedemikian sehingga jika 0 < |𝑥 − 1| < 𝛿, 

maka |
𝑥+1

𝑥+3
−

1

2
| < 𝜖. Berdasarkan definisi limit, terbukti bahwa lim

𝑥→1

𝑥+1

𝑥+3
=

1

2
.  ∎ 
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Kesimpulan dan Saran 

Kesimpulan 

Konsep limit merupakan pilar fundamental yang menopang struktur analisis real. 
Pendekatan epsilon-delta (𝜖 − 𝛿) hadir sebagai alat esensial yang memberikan dasar 
logika yang kokoh dan presisi matematis untuk konsep tersebut. Artikel ini telah 
menguraikan bagaimana pendekatan 𝜖 − 𝛿 secara efektif menjembatani pemahaman 
limit yang bersifat intuitif sebagaimana yang sering diperkenalkan dalam kalkulus 
dengan tuntutan pembuktian formal yang rigor dalam analisis real. 

Melalui pembahasan dan contoh-contoh yang disajikan, dapat disimpulkan bahwa 
proses pembuktian limit menggunakan definisi 𝜖 − 𝛿 dapat disistematisasi menjadi dua 
tahap utama yaitu, analisis pendahuluan untuk menemukan hubungan antara 𝛿 dan 𝜖, 
serta pembuktian formal untuk memvalidasi hubungan tersebut secara logis. Telah 
ditunjukkan pula bahwa metode ini bersifat robust dan dapat diaplikasikan pada 
berbagai jenis fungsi, mulai dari fungsi linear yang sederhana hingga fungsi kuadratik 
dan rasional yang memerlukan strategi pembatasan tambahan. Penguasaan definisi 
limit secara formal bukan hanya sebuah tujuan akhir, melainkan sebuah gerbang krusial 
untuk memahami konsep-konsep analisis yang lebih lanjut seperti kekontinuan, turunan, 
dan integral secara mendalam dan akurat. 

Saran  

Berdasarkan pembahasan dan kesimpulan yang telah diuraikan, berikut adalah 
beberapa saran yang dapat diajukan: 

Bagi Mahasiswa dan Pembelajar 

Disarankan untuk tidak hanya menghafal langkah-langkah pembuktian, tetapi fokus 
pada pemahaman logika di balik definisi 𝜖 − 𝛿. Menggunakan visualisasi grafis untuk 
menginterpretasikan makna 𝜖 dan 𝛿 dapat sangat membantu dalam membangun intuisi 
yang benar. Latihan yang konsisten pada berbagai tipe fungsi akan mempertajam 
kemampuan analisis dan pembuktian. 

Bagi Pengajar 

Dalam proses pembelajaran, disarankan untuk secara eksplisit mendedikasikan waktu 
untuk menjelaskan transisi dari konsep limit yang intuitif ke definisi yang formal. 
Mendemonstrasikan tahap "analisis pendahuluan" atau scratch work secara terbuka di 
depan kelas dapat membantu mahasiswa memahami bagaimana cara "menemukan" 𝛿 
yang tepat, sehingga proses pembuktian tidak terkesan seperti "trik sulap". 

Untuk Penelitian Lanjutan 

Penelitian di masa depan dapat diarahkan pada studi komparatif mengenai efektivitas 
berbagai pendekatan pedagogis dalam mengajarkan konsep 𝜖 − 𝛿. Selain itu, analisis 
mengenai kesulitan-kesulitan spesifik mahasiswa Indonesia dalam memahami konsep ini 
dapat menjadi area penelitian yang menarik untuk menghasilkan modul pembelajaran 
yang lebih kontekstual dan efektif. 
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