Maliki Interdisciplinary Journal (M1J) elSSN: 3024-8140
Volume 2, Issue 8, 2024 pp. 55-62 http://urj.uin-malang.ac.id/index.php/mij/index

Penerapan Algoritma Recursive DFS dalam pembuatan
Labirin Dinamis pada Game “Lingkaran Setan’” dengan
teknik Procedural Maze Generation

Afiifah Zain Raidah', Suci Wulandari?, Rahmat Fauzan3, Nazzil Akfa Said F4

%234 program Studi Teknik Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
e-mail: ¥210605110150@student.uin-malang.ac.id

Kata Kunci: ABSTRAK
Recursive DFS; labirin Penelitian ini mengeksplorasi penerapan teknik Procedural Maze
dinamis; game Lingkaran Generation dalam menciptakan labirin dinamis pada permainan
Setan; Procedural Maze "Lingkaran Setan". Labirin dinamis diperlukan untuk memberikan
Generation pengalaman bermain yang menarik dan menantang, memastikan
variasi yang konstan dalam setiap sesi permainan. Kami menggunakan
Keywords: algoritma Procedural Maze Generation untuk secara otomatis
Recursive DFS; labyrinth; menciptakan labirin dengan struktur yang kompleks namun dapat
game Lingkaran Setan; diakses, memungkinkan pemain untuk menjelajahi lingkungan
Procedural Maze permainan dengan keunikan setiap kali permainan dimulai. Penelitian
Creationafter ini menitikberatkan pada integrasi algoritma Procedural Maze

Generation dengan Game Lingkaran Setan, menghasilkan lingkungan
yang dinamis dan selalu menantang. Hasil eksperimen menunjukkan bahwa penggunaan teknik ini dapat
meningkatkan tingkat replayability dan kepuasan pemain. Selain itu, kami mengukur performa algoritma
dalam hal efisiensi dan kecepatan pembangunan labirin untuk memastikan pengalaman bermain yang
mulus. Temuan dari penelitian ini memberikan kontribusi pada pemahaman lebih lanjut tentang
penerapan teknik Procedural Maze Generation dalam konteks permainan video, memberikan dasar untuk
pengembangan game yang lebih dinamis dan menarik di masa depan.

ABSTRACT

This research explores the application of Procedural Maze Generation techniques in creating dynamic
mazes for the game "Lingkaran Setan". Dynamic mazes are necessary to provide an engaging and
challenging gameplay experience, ensuring constant variation in each game session. We use a Procedural
Maze Generation algorithm to automatically create mazes with complex yet accessible structures,
allowing players to explore the game environment uniquely each time the game starts. This research
focuses on the integration of the Procedural Maze Generation algorithm with the game "Lingkaran
Setan," resulting in dynamic and always challenging environments. Experimental results show that using
this technique can enhance replayability and player satisfaction. Additionally, we measure the algorithm's
performance in terms of efficiency and maze-building speed to ensure a smooth gaming experience. The
findings from this study contribute to a further understanding of the application of Procedural Maze
Generation techniques in the context of video games, providing a foundation for developing more
dynamic and engaging games in the future.

@ ®® @ This is an open access article under the CC BY-INC-SA license.
Copyright © 2023 by Author. Published by Universitas Islam Negeri Maulana Malik 1brahim Malang.

http://urj.uin-malang.ac.id/index.php/mij/index
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:*210605110150@student.uin-malang.ac.id

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

Pendahuluan

Indonesia merupakan salah satu negara dengan jumlah penggemar game yang
sangat tinggi. Di sekitar kita, terlihat bahwa mayoritas orang memainkan game, baik
untuk hiburan sesekali maupun sebagai rutinitas harian. Mulai dari anak-anak hingga
orang dewasa, banyak yang menikmati permainan ini. Oleh karena itu, industri game
menawarkan peluang bisnis yang sangat menjanjikan bagi para pengembang game.
Besarnya minat terhadap game menciptakan peluang besar bagi profesional di bidang
ini. Bahkan, hal ini juga membuka kesempatan bagi pemula yang ingin belajar dan serius
dalam pembuatan game (Fadila et al., 2023).

Dalam era teknologi dan informasi yang melanda saat ini, penggunaan teknologi
semakin merasuk ke berbagai aspek kehidupan dengan tingkat intensitas yang semakin
tinggi. Bukan hanya kalangan dewasa, tetapi mulai dari anak-anak hingga orang dewasa,
banyak yang menyisihkan waktu mereka untuk terlibat dalam berbagai jenis permainan
berbasis komputer. Jenis permainan ini meliputi berbagai tingkat kompleksitas, mulai
dari yang sederhana hingga yang memiliki aturan permainan yang lebih rumit .

Salah satu bentuk permainan yang semakin diminati adalah permainan labirin.
Labirin, sebagai jenis permainan yang menantang, menjadi daya tarik tersendiri di
tengah kepopuleran permainan berbasis teknologi. Labirin, menurut definisi, adalah
sebuah teka-teki yang menantang pemain untuk menemukan jalan keluar. Selama
perjalanan melalui labirin, pemain akan menghadapi berbagai rintangan atau halangan
yang harus diatasi untuk mencapai tujuan akhir (Adiguna & Swanjaya, 2020). Untuk
menciptakan game labirin dengan arena yang dinamis, diperlukan sebuah pembangkit
labirin atau maze generator. Maze generator ini bertujuan untuk menghasilkan labirin
yang berbeda setiap kali pemain memainkan game tersebut (Krisdiawan et al., 2022).
Dalam konteks ini, pemain diundang untuk menjelajahi jalur-jalur yang kompleks,
memecahkan teka-teki, dan mencapai tujuan akhir dalam labirin yang dihadapkan.
Labirin, sebagai bentuk puzzle yang telah lama menjadi bagian integral dari berbagai
tantangan intelektual, terus menghadirkan daya tariknya dalam dunia gaming. Dengan
sejumlah jalur yang kompleks dan bercabang-cabang, labirin menantang pemain untuk
memecahkan teka-teki dengan menemukan jalur yang benar, mulai dari titik awal hingga
titik akhir . Labirin pada umumnya dibuat untuk tujuan hiburan. Dalam kehidupan nyata,
labirin sering dibuat di taman atau ruangan dengan pembatas berupa pagar atau
tembok, dengan ukuran yang bervariasi (Rahmasuci et al., 2019).

Dalam dunia game, pengalaman menjelajahi labirin semakin menarik ketika
mengintegrasikan algoritma DFS (Depth-First Search) atau Recursive DFS dalam proses
pembuatannya. Algoritma DFS membuka dimensi baru dalam pembuatan labirin,
memungkinkan pengembang game untuk menciptakan pengalaman bermain yang tak
terduga dan dinamis. Dengan menggabungkan Recursive DFS dalam kerangka teknik
procedural maze generation, "Lingkaran Setan" menjadi wahana eksplorasi yang
menarik, di mana algoritma ini memberikan kontribusi signifikan dalam menciptakan
labirin yang unik setiap kali permainan dimulai.

Recursive Depth-First Search (DFS) adalah implementasi khusus dari algoritma DFS
yang menggunakan teknik rekursi untuk menjelajahi struktur data, seperti graf atau

56

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

pohon. Menurut (Needham & Hodler, n.d.), DFS (Depth-First Search) adalah algoritma
traversal graf yang mendasar. Algoritma ini dimulai dengan memilih sebuah simpul,
kemudian memilih salah satu simpul tetangganya, dan berjalan sejauh mungkin sebelum
melakukan backtracking. Algoritma ini secara mendalam mengeksplorasi suatu cabang
hingga mencapai titik akhir sebelum kembali ke cabang sebelumnya dan melanjutkan
pencarian. Algoritma Recursive Depth first search (DFS) ini telah menjadi salah satu
pendekatan yang signifikan, terutama pada game berbasis labirin (Jurnal Digit Vol1 No2,
2024).

Dalam artikel ini, kita akan membahas secara rinci bagaimana penerapan
Algoritma Recursive DFS pada '"Lingkaran Setan" mempengaruhi pembuatan labirin
dinamis, memberikan pengalaman bermain yang menghibur dan penuh tantangan.
Game “Lingkaran Setan” menghadirkan tantangan bertahan hidup dari labirin yang
penuh godaan setan. Pemain dalam game ini harus mengumpulkan item tasbih untuk
menunda pergerakan musuh agar bisa mencari jalan keluar dari labirin tersebut.
Pembuatan labirin pada game ini menggunakan bantuan Al Maze Generator dengan
menerapkan metode DFS (Depth First Search).

Metode

Algoritma Recursive DFS ini memulai penelusuran dari suatu simpul tertentu dan
mengeksplorasi sejauh mungkin di setiap cabang sebelum melakukan backtracking.
Konsep dasarnya adalah memulai dari suatu simpul tertentu, kemudian menjelajahi
sejauh mungkin di setiap cabang sebelum melakukan backtracking. DFS bekerja dengan
cara mempertahankan sebuah tumpukan (atau menggunakan rekursi) untuk melacak
simpul-simpul yang akan dikunjungi. Penerapan algoritma DFS dengan menggunakan
rekursi dapat dilihat pada ilustrasi berikut:

1. Terdapat Graph dan table visited dan stack yang kosong

Gambar 1. Tahap pertama DFS

2. Telusuri node 0 dan memasukkan tetangga node o kedalam stack

o] | | | | visited

[v]2]3] | | staek

Gambar 2. Tahap Kedua DFS

57

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

3. Telusuri node 1

[o[1] | | | visited

l213| | I]Stack

Gambar 3. Tahap Ketiga DFS

4. Ganti penelusuran, karena node 1 adalah node yang paling ujung pada graph
tersebut, maka penelusuran akan kembali ke node o, dan dilanjutkan dengan
penelusuran node 2. Node 4 ditambahkan pada stack karena merupakan tetangga
2.

fo]1]2] [| visited

[«]3] [| | staek

Gambar 4. Tahap keempat DFS

5. Penelusuran menuju node terdalam, yaitu node 4

[0]1[2|4|]visited

L] | [[| stk

Gambar 5. Tahap kelima DFS

6. Kembalikenode 2,karenanode 4 adalah node yang paling ujung, maka penelusuran akan
kembali ke node 2 dan dilanjutkan ke node 3.

7. Penelusuran berakhir, karena semua node sudah dikunjungi maka penelusuran selesai.
Pembahasan

Penerapan algoritma DFS pada labirin game 3D bisa dilihat dari kode program
berikut serta penjelasannya

58

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

void Generate(int x,int z) {
if (CountSquareNeighbours(x, z) >=2)
return; map[x, z] = 0;
directions.shuffle();
Generate(x + directions[0].x, z+ directions[0].z);
Generate(x + directions[1].x, z + directions[1].2);
Generate(x + directions[2].x, z + directions[2].z);
Generate(x + directions[3].x, z + directions[3].2);

Kode diatas akan menghasilkan labirin sesuai dengan alur kerja Algoritma DFS
yang sudah dijelaskan sebelumnya. berikut adalah penjelasan dari kode:

1. Fungsi Generate

Fungsi Generate menerima dua parameter, x dan z, yang menggambarkan
koordinat posisi saat ini dalam matriks labirin (map). Koordinat (x, z) merepresentasikan
lokasi atau sel yang sedang diproses.

2. Pengecekan Tetangga

Fungsi CountSquareNeighbours(x, z) digunakan untuk menghitung jumlah
tetangga sel pada posisi (X, z) yang sudah diisi (dengan nilai 1). Jika jumlah tetangga yang
sudah diisi lebih dari atau sama dengan 2, maka fungsi Generate langsung keluar tanpa
melakukan lebih lanjut. Hal ini mencegah agar tidak terbentuk cabang-cabang kecil yang
dapat menghasilkan labirin yang terlalu kompleks.

3. Penandaan sel (map[x, z] = 0):

Jika kondisi pada langkah sebelumnya tidak terpenuhi, nilai sel pada posisi (x, z)
dalam matriks map diubah menjadi o. Ini menandakan bahwa jalur atau ruang kosong
sedang dibuat pada posisi ini.

4. Pengacakan Arah (directions.shuffle()):

Dalam langkah ini, terdapat objek directions yang mungkin berisi empat vektor
arah yang mewakili perpindahan ke tetangga atas, bawah, kiri, dan kanan. Dengan
memanggil fungsi shuffle(), urutan arah ini diacak untuk memilih urutan yang berbeda
setiap kali fungsi Generate dipanggil. Hal ini memberikan variasi pada arah pergerakan
dan menghasilkan labirin yang lebih bervariasi.

5. Pemanggilan Rekursif

Pada bagian ini, terdapat empat pemanggilan rekursif untuk setiap arah yang telah
diacak. Dengan menggunakan indeks o hingga 3 dari objek directions, fungsi Generate
dipanggil kembali untuk menjelajahi tetangga sel saat ini. Setiap pemanggilan rekursif
menyebabkan proses serupa dilakukan pada sel tetangga, dan proses ini terus berlanjut
hingga kondisi berhenti terpenuhi atau seluruh labirin terbentuk.

59

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

Langkah selanjutnya melibatkan penerapan langkah-langkah tersebut dalam skrip
untuk menciptakan labirin. Dalam pelaksanaan ini, dua model kubus digunakan sebagai
representasi 3D untuk labirin, sesuai dengan Gambar 1, dan Gambar 2.

Selanjutnya dalam pembentukan labirin ini digunakan juga fungsi shuffle yang
nantinya akan mengantre labirin dengan jumlah dan letak yang bervariasi. Berikut kode
yang digunakan untuk mengimplementasikan fungsi shuffle dalam pembuatan labirin.

public static void shuffle<T>(this IList<T> list)

{
int n =
list.Count;
while (n > 1)

{
n-

intk=rng.Next(n+1);
T Value = list[k];

list[k] = list[n]; list[n] = Value;

Berikut penjelasan kode
1. Deklarasi Metode Ekstensi shuffle

Metode ini dideklarasikan sebagai metode ekstensi untuk objek yang
mengimplementasikan antarmuka IList<T>. Dengan kata lain, metode ini dapat
digunakan pada tipe data yang merupakan daftar (list).

2. Inisialisasi Jumlah Elemen

Variabel n diinisialisasi dengan jumlah total elemen dalam daftar (list). Ini adalah
langkah awal untuk menentukan seberapa banyak elemen yang akan diacak.

3. Looping untuk Pengacakan

Dalam setiap iterasi loop, nilai n dikurangi satu (n--) untuk menentukan rentang
indeks elemen yang dapat diakses. Selanjutnya, nilai indeks acak k dihasilkan dengan
menggunakan metode Next dari objek rng. Nilai k akan berada dalam rentang antara o
dan n, inklusif.

4. Penukaran Elemen

Nilai elemen pada indeks ‘k’ ditukar dengan nilai elemen pada indeks ‘n’. Proses
pertukaran elemen ini merupakan inti dari algoritma Fisher-Yates yang menghasilkan
pengacakan. Proses ini diulang hingga hanya ada satu elemen yang belum diacak.

Dalam konteks labirin, metode shuffle digunakan pada list directions(pada kode
generate) yang berisi empat vektor arah. Penerapan shuffle pada directions
menyebabkan urutan vektor arah ini diacak setiap kali fungsi Generate dipanggil.

60

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

Dengan mengacak arah perpindahan, proses pembentukan labirin menjadi lebih dinamis
dan bervariasi, menciptakan jalur yang berbeda-beda setiap kali labirin dibangun. Hal ini
memberikan keunikan dan tantangan pada pengalaman bermain labirin dalam game.

—

Gambar 6. Hasil generate labirin ke 1 dan ke 2

Ketika program dieksekusi, labirin yang dihasilkan menampilkan variasi bentuk
yang bergantung pada titik awal pembentukannya. Hal ini dapat diamati melalui
perbandingan antara Gambar 1 dan Gambar 2, yang menunjukkan perbedaan hasil
pembentukan labirin. Proses pembentukan labirin dimulai dari suatu titik awal tertentu,
seperti yang terlihat pada Gambar 1 dan Gambar 2, menghasilkan bentuk dan struktur
labirin yang beragam. Dengan menggunakan pendekatan algoritma DFS dan konsep
rekursi, program mampu menciptakan labirin yang dinamis dan bervariasi setiap kali
dijalankan, memberikan pengalaman bermain yang unik pada setiap iterasi permainan.

Kesimpulan dan Saran

Implementasi Algoritma Recursive DFS pada pembuatan labirin dalam game
"Lingkaran Setan' sukses menciptakan labirin yang dinamis, kompleks, dan bervariasi.
Keberhasilan algoritma dalam penjelajahan rekursif dan pembentukan Ilabirin
memberikan daya tarik dan tingkat tantangan yang optimal dalam pengalaman bermain.
Dengan demikian, Algoritma DFS terbukti menjadi pilihan yang efektif untuk
menghasilkan labirin menarik dalam konteks pengembangan game.

Daftar Pustaka

Adiguna, Y., & Swanjaya, D. (2020). Implementasi algoritma backtracking untuk mencari
jalan keluar labirin.

Fadila, J. N., Nugroho, F., Artanti, V., Rohma, S. A., Huda, M. K., & Priambudi, N. S. (2023).
Penerapan Hfsm pada Game 3d “Petualang Qur’an.” Jurnal Ilmiah Informatika,
11(01), 15-21. https://doi.org/10.33884/jif.v11i01.6538

Krisdiawan, R. A,, Fitriani, A., & Budianto, H. (2022). Penerapan Algoritma Recursive
Backtracking sebagai Maze Generator pada Game Labirin Aksara Sunda. Media Jurnal
Informatika, 14(1), 31. https://doi.org/10.35194/mji.v14i1.2326

Needham, M., & Hodler, A. E. (n.d.). Graph Algorithms.

61

https://doi.org/10.33884/jif.v11i01.6538
https://doi.org/10.35194/mji.v14i1.2326

Maliki Interdisciplinary Journal (M1J): 2024, 2(8), 55-62 elSSN: 3024-8140

Putri, N. M., Umri, I. R., Azmi, M. I. N., Amriadi, A., Shaffira, F., Karami, A. F., & Nugroho, F.
(2024). Implementasi Algoritma Recursive Depth First Search pada Game Labirin 3d
berbasis desktop. Jurnal Digit, 14(1), 1-8.

Rahmasuci, M., S, H. H., Azizah, M., Wulandari, P., A, D. A., & Bukhori, S. (2019). Strategi
menemukan jalan keluar labirin dengan waktu tercepat menggunakan metode DFS.
INFORMAL: Informatics Journal, 3(1), 12. https://doi.org/10.19184/isj.v3i1.9852

62

https://doi.org/10.19184/isj.v3i1.9852

