Klasifikasi Buah Jeruk Menggunakan Metode KNN Berdasarkan Fitur RGB dan HSV
Abstract
Classification of citrus fruit freshness is an important challenge in the agricultural industry to improve efficiency and product quality. This study aims to classify fresh and rotten oranges based on RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) color feature extraction using the K-Nearest Neighbor (KNN) algorithm. The dataset used includes 146 data for training and 88 data for testing. The KNN algorithm was tested with k values varying between 1 and 7. The purpose of this study is to make it easier for farmers to classify citrus fruits, so that they can save time and increase the accuracy of fruit quality assessment. The test results show that this method is able to classify fresh and rotten citrus fruits with an accuracy of 88.95%. This study proves that the RGB and HSV-based classification system using KNN can be relied on to assist the citrus fruit quality assessment process.
Downloads
References
Adenugraha, Setya Putra, Veri Arinal, and Dadang Iskandar Mulyana. 2022. “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN Dan PCA Berdasarkan Citra RGB Dan HSV.” JURNAL MEDIA INFORMATIKA BUDIDARMA 6 (1): 9. https://doi.org/10.30865/mib.v6i1.3287.
Farokhah, Lia, and Penulis Korespondensi. n.d. “IMPLEMENTASI K-NEAREST NEIGHBOR UNTUK KLASIFIKASI BUNGA DENGAN EKSTRAKSI FITUR WARNA RGB IMPLEMENTATION OF K-NEAREST NEIGHBOR FOR FLOWER CLASSIFICATION WITH EXTRACTION OF RGB COLOR FEATURES.” https://doi.org/10.25126/jtiik.202072608.
Hadi, Heru Pramono, and Hari Rachmawanto. 2022. “Analisa Fitur Ekstraksi Ciri Dan Warna Dalam Proses Klasifikasi Kematangan Buah Rambutan Berbasis K-Nearest Neighbor.” SKANIKA: Sistem Komputer Dan Teknik Informatika 5 (2): 177–89.
Himmah, Elok Faiqotul, Maura Widyaningsih, and Maysaroh Maysaroh. 2020. “Identifikasi Kematangan Buah Kelapa Sawit Berdasarkan Warna RGB Dan HSV Menggunakan Metode K-Means Clustering.” Jurnal Sains Dan Informatika 6 (2): 193–202. https://doi.org/10.34128/jsi.v6i2.242.
Kornelia Ulandari, Alisyia, Ghina Kamilah Ramdhani, M Naufal Arwansyuri, Fitri Bimantoro, and Teknik Informatika. 2024. “Program Studi Teknik Informatika.” Vol. 3.
Maya, Alifah, Kinanti Putri, and Anief Fauzan Rozi. 2024. “IMPLEMENTASI CONVUTIONAL NEURAL NETWORK DALAM MENENTUKAN TINGKAT KEMATANGAN MENTIMUN DAN TOMAT BERDASARKAN WARNA KULIT.” Jurnal Mahasiswa Teknik Informatika. Vol. 8.
Napitu, Stifani, Rini Paramita Panjaitan, Putri Aisyah Nulhakim, and Muaz Khalik Lubis. 2023. “Klasifikasi Buah Jeruk Segar Dan Busuk Berdasarkan RGB Dan HSV Menggunakan Metode KNN.” Jurnal SAINTEKOM 13 (2): 214–21. https://doi.org/10.33020/saintekom.v13i2.420.
Putra, Inta, J E Prasetyo, C Aminin, and Ika Dana. 2023. “Cara Sitasi.” 2023. Deteksi Kesegaran Buah Apel 7 (2): 120–29.
Sari, Bella Maya. 2020. “Identifikasi Tingkat Kematangan Buah Strawberry Berdasarkan Warna RGB Dengan Menggunakan Metode Regionprops.” Terapan Informatika Nusantara 1 (5): 225–30.
Copyright (c) 2025 Nirma Nur Diana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



