Klasterisasi efektivitas penyelesaian tindak pidana di Indonesia menggunakan metode K-Means clustering

  • Muchammad Alif Zaidan Program Studi Teknik Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Enggarani Wahyu Ekaputri Program Studi Teknik Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Nur Fitriyah Ayu Tunjung Sari Program Studi Teknik Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
Keywords: effectiveness of crime resolution; Indonesia; K-means clustering; criminality; law enforcement

Abstract

Indonesia faces a serious problem related to the high crime rate, which is reflected in the Police statistics that show an increasing trend of criminal cases every year. This has disrupted the sense of security of the community, decreased public trust in law enforcement officials, and hindered national development. One of the main causes of the high crime rate is the suboptimal effectiveness of crime resolution, indicated by the high number of unresolved cases and the low case completion rate (TPP). Factors such as a lack of human resources and infrastructure, weak law enforcement, and suboptimal inter-agency coordination contribute to this ineffectiveness. Although the government has implemented various policies and programs to improve the effectiveness of crime resolution, significant results have not been achieved. This study aims to cluster the effectiveness of crime resolution in Indonesia using the K-Means Clustering method. This method will cluster the data based on certain characteristics, providing an overview of the factors that influence the effectiveness of crime settlement in various regions. The results of this study are expected to be the basis for formulating appropriate strategies in improving the effectiveness of criminal settlement in Indonesia.

Downloads

Download data is not yet available.

References

Block, J. H., & Fisch, C. (2020). Eight tips and questions for your bibliographic study in business and management research. Management Review Quarterly, 70(3), 307–312. https://doi.org/10.1007/s11301-020-00188-4

Datau, F. J., Puluhulawan, F. U., & Mantali, A. R. Y. (2022). Analisis efektifitas pasal 385 KUHP (lama) dalam penanggulangan penyelesaian perkara penyerobotan tanah yang terjadi di Indonesia. JISHS : Jurnal Ilmu Sosial, Humaniora dan Seni, 1(2), 250–255. http://jurnal.minartis.com/index.php/jishs/article/view/746

Mardi, Y. (2016). Data mining : Klasifikasi menggunakan algoritma C4.5. Jurnal Edik Informatika, 2(2), 213–219. https://ejournal.upgrisba.ac.id/index.php/eDikInformatika/article/view/1465

Saleh, M. A., & Khan, I. R. (2019). Crime data analysis in Python using K-Means clustering. IJRASET: International Journal for Research in Applied Science and Engineering Technology, 7(4), 151–155. https://doi.org/10.22214/ijraset.2019.4027

Susanti, E. (2021). Kebijakan hukum pidana jangka waktu proses penyidikan dalam system peradilan pidana di Indonesia. Mizan: Jurnal Ilmu Hukum, 10(2). https://doi.org/10.32503/mizan.v10i2.2108

Wang, S. (2020). Discrimination and classification: Applications to discriminant analysis. Carleton University: School of Mathematics and Statistics, 1–40. https://carleton.ca/math/wp-content/uploads/Shiying-Wang-Honours-Project.pdf

PlumX Metrics

Published
2024-11-30
How to Cite
Zaidan, M., Ekaputri, E., & Sari, N. (2024). Klasterisasi efektivitas penyelesaian tindak pidana di Indonesia menggunakan metode K-Means clustering. Maliki Interdisciplinary Journal, 2(11), 1521-1531. Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/11579
Section
Articles

Most read articles by the same author(s)