Implementasi metode regresi dalam pengolahan data platfrom rotten tomatoes movies
Abstract
This research aims to implement the linear regression method in analyzing data from the Rotten Tomatoes Movies platform, which provides global film information including critic ratings, duration and audience scores. The multiple linear regression method is applied to analyze the influence of independent variables, namely film duration and critic rating (tomatoMeter), on the dependent variable, namely audience score (audienceScore). The results of the analysis show that these two independent variables have a significant influence on audience scores, with a coefficient of determination (R²) of 23.51%, which means that 23.51% of the variation in audience scores can be explained by duration and critic ratings. The regression model obtained is with (audience score), (film duration), (critic rating). However, the relatively low R² value indicates the presence of other variables that may influence viewer scores. This study illustrates the potential of linear regression in processing big data in the film industry for prediction purposes, and indicates the importance of additional variables to improve the accuracy of audience score prediction models.
Downloads
References
Arif, M., Syukur, A., & Faisal, M. (2023). Model Regresi Linear Untuk Estimasi Mobil Bekas Menggunakan Bahasa Python. Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(2), 182–191. https://doi.org/10.34312/euler.v11i2.20698
Baskoro, S., Chamidy, T., & Zaman, S. (2022). Pengujian akurasi model regresi logistik multinomial untuk memprediksi keberhasilan mahasiswa di perguruan tinggi menggunakan r. Jurnal Ilmiah Akuntansi Dan Keuangan, 5(3), 1551–1565. https://journal.ikopin.ac.id/index.php/fairvalue
Ghozali, I. (2012). Aplikasi Analisis Multivariate dengan Program IBM SPSS 20. Badan Penerbit Universitas Diponegoro.
Ilmi, R. R., Kurniawan, F., & Harini, S. (2023). Prediksi Rating Film IMDb MenggunakanDesition Tree. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 10, 791–798. https://doi.org/10.25126/jtiik.2023106615
Lestari, W. (2019). Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi (Studi Kasus : STMIK Bina Bangsa Kendari). In SIMKOM (Vol. 4, Issue 2). http://e-jurnal.stmikbinsa.ac.id/index.php/simkom35
Ningsih, T., Herrhyanto, N., & Rachmatin, D. (2019). ANALISIS REGRESI LINEAR PIECEWISE DUA SEGMEN DENGAN MENGGUNAKAN METODE KUADRAT TERKECIL.
Sholeh, M., Kumalasari Nurnawati, E., & Lestari, U. (2023). Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner. In Jurnal Informatika Sunan Kalijaga) (Vol. 8, Issue 1). https://archive.ics.uci.edu/ml/datasheets.php.
Sudrajat, M., & Tjuju S. A. (2010). Statistika-Konsep Dasar Pengumpulan dan Pengolahan Data. Widya Padjajaran.
Yamin, S. (2011). Generasi Baru Mengolah Data Penelitian dengan Partial Least Square Path Modeling. Penerbit Salemba Infotek.
Zuhri. (2020). Analisis Regresi Linier dan Korelasi menggunakan Pemrograman Visual Basic. Jurnal Ilman: Jurnal Ilmu Manajemen, 8(2), 42–50. http://journals.synthesispublication.org/index.php/ilman
Copyright (c) 2025 Hanik Muafiyah, Riza Mar'atus Sholihah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



