Risiko bias algoritma dalam credit scoring berbasis ai pada bank syariah
Abstract
The use of artificial intelligence (AI) in credit scoring at Islamic banks offers significant efficiency, but on the other hand poses the risk of algorithmic bias that conflicts with the principle of fairness in Islamic finance. This bias generally stems from unrepresentative historical data and opaque algorithm structures, which have the potential to reinforce social injustice and hinder financial inclusion. This study aims to analyze the forms of algorithmic bias in Islamic financing systems, evaluate their impact on the principle of fairness, and offer mitigation strategies based on maqāṣid al-sharī‘ah. The method used is a qualitative literature review with relevant literature search. The analysis results show that algorithmic bias can lead to discrimination against vulnerable groups, reduce public trust, and undermine the values of maqāṣid al-sharī‘ah. Therefore, the proposed mitigation strategies include ethical and inclusive algorithm design, sharia-based algorithmic audits, and the application of explainable AI to ensure system transparency and accountability. The integration of maqāṣid principles into AI governance is key to ensuring that technological innovation remains aligned with the values of justice and inclusivity in Islamic banking. In conclusion, strengthening regulations, ethical governance, and sharia oversight are essential to prevent and minimize the risk of algorithmic bias in AI credit scoring systems at Islamic banks.
Downloads
References
Arsyad, I., Kharisma, D. B., & Wiwoho, J. (2025). Artificial intelligence and Islamic finance industry: problems and oversight. International Journal of Law and Management, ahead-of-p(ahead-of-print). https://doi.org/10.1108/IJLMA-07-2024-0236
Budianto, E. W. H. (2023). Pemetaan Penelitian Risiko Operasional Pada Industri Keuangan Syariah Dan Konvensional: Studi Bibliometrik Vosviewer Dan Literature Review. Ekonomi Islam, 14(2), 158–174. http://repository.uin-malang.ac.id/17264/
Dessy Boegiyati, Segaf, & Parmujianto. (2024). Integrasi Prinsip Syariah dalam Pengelolaan Modal Kerja dan Keputusan Pembiayaan: Tinjauan Teoritis. Jurnal Mu’allim, 6(1), 134–149. http://repository.uin-malang.ac.id/18470/
Faheem, M. A. (2021). AI-Driven Risk Assessment Models : Revolutionizing Credit Scoring and Default AI-Driven Risk Assessment Models : Revolutionizing Credit Scoring and Default Prediction. October. https://doi.org/10.13140/RG.2.2.21281.01128
Gafar, G. A., & Wang, G. (2023). Implementation of Machine Learning for Sharia financing Scoring in Indonesian MSME sectors. INNOVATIVE: Journal Of Social Science Research, 3(5), 814–830.
Hurlin, C., Perignon, C., & Saurin, S. (2021). The Fairness of Credit Scoring Models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3785882
Khan, T. (2025). AI Governance for Islamic Finance – A Dynamic Prescriptive Approach. https://doi.org/https://dx.doi.org/10.2139/ssrn.5239754
Musa, S. Z. bin S., Kholiq, A., & Anne Haerany. (2025). Comparative Analysis of Artificial Intelligence ( AI ) Transformation In Islamic Financial Sector Products and it ’ s Implications on Economic Growth in Indonesia and Malaysia. February.
Muttaqim, H., Sumaryana, F. D., & Yahya, A. (2024). Manajemen Keuangan. PT. Sonpedia Publishing Indonesia.
Pamuk, M. (2024). Finding Path Towards AI-based Services in the Finance Industry.
Pratiwi, E. Y., Haq, A. Z., & Daufa, Z. D. (2025). AI dalam Manajemen Risiko untuk Membangun Keputusan Keuangan yang Lebih Baik : Systematic Literature Review. JATI (Jurnal Mahasiswa Teknik Informatika), 9(1), 999–1004. https://doi.org/https://doi.org/10.36040/jati.v9i1.12553
Puannandini, D. A., Fabian, R. M., Firdaus, R. A. P., Mustopa, M. Z., & Herdiyana, I. (2025). Liabilitas Produk Ai dalam Sistem Hukum Indonesia : Implikasi Bagi Pengembang, Pengguna, dan Penyedia Layanan. Iuris Studia: Jurnal Kajian Hukum, 6(1), 24–34. https://doi.org/https://doi.org/10.55357/is.v6i1.808
Raji, A. A. H., Alabdoon, A. H. F., & Almagtome, A. (2024). AI in Credit Scoring and Risk Assessment: Enhancing Lending Practices and Financial Inclusion. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), 1, 1–7. https://doi.org/10.1109/ICKECS61492.2024.10616493
Sadok, H., Sakka, F., & Maknouzi, M. E. H. El. (2022). Cogent Economics & Finance Artificial intelligence and bank credit analysis : A review Artificial intelligence and bank credit analysis : A review. Cogent Economics & Finance, 10(1). https://doi.org/10.1080/23322039.2021.2023262
Setyawan, R., Tobing, W. T. M., & Handoko, S. (2024). The Ethical Dilemmas of AI-Driven Decision-Making in Business : A Multi-Perspective Case Study on Corporate Accountability and Transparency. Jurnal Manajemen Sosial Ekonomi (DINAMIKA), 4(1), 270–278. https://doi.org/https://doi.org/10.51903/z0b0ep50
Wati, P. G., Wardana, G. K., & Holis, M. N. (2024). Penerapan Manajemen Risiko Pembiayaan Pada Perusahaan Fintech Pegadaian Syari’ah. J-Mabes: Jurnal Manajemen, Akuntansi, Bisnis Dan Studi Ekonomi Syariah, 1(2), 19–30. http://repository.uin-malang.ac.id/19786/
Zafar, M. B., & Ali, H. (2025). Shariah Governance Standard on Generative AI for Islamic Financial Institutions. https://doi.org/10.2139/ssrn.5143165
Copyright (c) 2025 Mochamad Fuad Marzuki

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



