Peran kecerdasan buatan dalam pemetaan risiko ekonomi makro
Abstract
The development of Artificial Intelligence (AI) has revolutionized approaches to macroeconomic analysis, particularly in mapping complex, dynamic, and multidimensional risks. This article explores the role of AI in identifying, forecasting, and managing macroeconomic risks through the application of machine learning algorithms, natural language processing, and other predictive modeling systems. The study examines AI’s contribution to forecasting key macroeconomic indicators such as inflation and economic growth, as well as its use in nowcasting and early warning systems for systemic crises. In the Indonesian context, AI has begun to be integrated into the measurement of economic uncertainty through text data processing of online news sources. Despite its promising potential, the application of AI still faces challenges such as data limitations, ethical issues, and the need for model interpretability. Using a descriptive-qualitative approach and literature review from national (SINTA) and international (Scopus) journals, this article highlights the importance of cross-sector collaboration and good governance in optimizing the role of AI in strengthening macroeconomic resilience both nationally and globally.
Downloads
References
Aydemir, R., Atik, Z., & Guloglu, B. (2024). Macro Stress Testing the Credit Risk of Conventional and Participation Banks in Turkey: A Nonparametric Quantile Regression Approach. Eastern European Economics, 62(6), 727-761. (n.d.).
Bakti, T. D., Sumanjaya, R., & Hasution, S. H. (2010). Pengatar Ekonomi Makro. USUpress.
Bank Indonesia. (2022). Indeks Ketidakpastian Ekonomi Indonesia (IKEI). Departemen Statistik Bank Indonesia. https://www.bi.go.id/id/statistik/indikator/ikei
Chamidy, T. (2023). Teknologi informasi: Masa depan atau masa lalu?.
Hasyim, A. I. (2017). Ekonomi makro. Prenada Media.
Ismayanti, M. UTILISASI KECERDASAN BUATAN DALAM PENGALAMAN BERWISATA DI JAKARTA: MANFAAT DAN BEBAN MASA DEPAN.
Kou, G., Chao, X., Peng, Y., Alsaadi, F. E., & Herrera Viedma, E. (2019). Machine learning methods for systemic risk analysis in financial sectors.
Nasih, M. Z., & Mansur, S. A. (2024). Digital transformation: The effect of learning management systems in developing employee digital competence. Jurnal Ekonomi, Bisnis & Entrepreneurship (e-Journal), 18(2).
OECD. (2021). The impact of AI on productivity, employment and skills. OECD Publishing. https://www.oecd.org/going-digital/ai/impact-of-ai-on-productivity-employment-and-skills.pdf
Pasaribu, M., & Widjaja, A. (2022). Manajemen Strategis di Era Kecerdasan Buatan. Kepustakaan Populer Gramedia.
Safitri, T. A., & Fathah, R. N. (2024). Analisis Swot Dan Pemetaan Manajemen Risiko Pada Lazismu Kota Yogyakarta. Jurnal Mirai Management, 9(2), 171-176.
Simamora, S. C. (2021). Counterparty Credit Limit: Identifikasi, Pengukuran dan Pemetaan Risiko Bank-Bank di Indonesia. Jurnal Ilmiah M-Progress, 11(1).
Suparmadi, S., & Ramadhani, A. (2022). Sistem Estimasi Pencapaian Target Profit Menggunakan Model Regresi Berbasis Machine Learning. Journal of Science and Social Research, 5(3), 703-708.
Yuniarti, V. S. (2016). Ekonomi Makro Syariah (Vol. 117). Pustaka Setia.
Zakaria, S. (2024). Pengantar teori ekonomi makro. Uwais Inspirasi Indonesia.
Zaman, S. (2023). Literasi digital dalam komunikasi ilmiah: eksploitasi, elaborasi, dan eksplorasi.
Copyright (c) 2025 Mohammad Shohibul Fajar Jailani

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



