Pendekatan Epsilon-Delta terhadap Konsep dan Pembuktian Limit dalam Analisis Real

  • Ahmad Maulana Firmansyah UIN Maulana Malik Ibrahim Malang
Keywords: Limit Function, Epsilon-Delta, Real Analysis, Proof in Mathematical, Calculus

Abstract

This article aims to elaborate on function limit through the epsilon-delta  approach and bridge the intuitive understanding from calculus to formal proof in real analysis. The writing of this article uses the method of literature study and conceptual analysis, by referring to standard textbooks of real analysis and relevant mathematical literature. The stages of discussion include presenting the connection between intuitive concepts and formal definitions, in-depth analysis of each component of the definition of , and concluding with a demonstration of a systematic proof framework. The article shows that the difficulties often encountered in formal proofs can be overcome through logical understanding and a two-stage process: preliminary analysis to find the right value of  and formal proof for validation. The result of this discussion is a conceptual guide that confirms that mastery of the  approach is a crucial competence for the successful study of advanced mathematics, particularly in real analysis.

Downloads

Download data is not yet available.

References

Dale Varberg. (2006). Dale Varberg, Edwin Purcell, Steve Rigdon - Calculus-Prentice Hall (2006). In Calculus (Vol. 9, pp. 1–797).

Dhombres, J. (1985). The origins of Cauchy’s rigorous calculus. In Historia Mathematica (Vol. 12, Issue 1). https://doi.org/10.1016/0315-0860(85)90078-3

Faridah, S., Umie Ruhmana Sari, S., & Malik Ibrahim Malang, M. (n.d.). Universitas Islam Negeri Maulana Malik Ibrahim Malang.

Islahul Mukmin, M., & Masamah, U. (2024). Pengembangan Bahan Ajar Digital-Interaktif Analisis Real Berbasis Moderasi Beragama untuk Mahasiswa PTKIN di Indonesia. In Academic Journal of Math (Vol. 06, Issue 01). http://journal.iaincurup.ac.id/index.php/arithmetic/index

Nicolaescu, L. I. (2019). Introduction To Real Analysis. In Introduction to Real Analysis. https://doi.org/10.1142/11553

Nirwana, N., Susanti, E., & Susanto, D. (2021). Pengaruh Penerapan Somatis, Auditori, Visual, dan Intelektual Terhadap Kemampuan Komunikasi Matematis Siswa. Ideas: Jurnal Pendidikan, Sosial, Dan Budaya, 7(4), 251. https://doi.org/10.32884/ideas.v7i4.451

Robert G. Bartle, D. R. S. (2011). Introduction to Real Analysis, Fourth Edition (Fourth). John Wiley & Sons. http://gen.lib.rus.ec/book/index.php?md5=1a7ac55b016cc56c99944370b68f1e4a

Rudin, W. (n.d.). [Walter_Rudin]_Principles_of_Mathematical_Analysis(BookFi).pdf. McGraw-Hill Science Engineering Math.

PlumX Metrics

Published
2025-06-30
How to Cite
Firmansyah, A. M. (2025). Pendekatan Epsilon-Delta terhadap Konsep dan Pembuktian Limit dalam Analisis Real. Maliki Interdisciplinary Journal, 3(6), 715-723. Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/17431
Section
Articles