Analisis prediksi mortalitas pada pasien gagal jantung menggunakan perbandingan algoritma support vector machine dan k-nearest neighbors

  • Siti Nur Maghfiroh Universitas Islam Negeri Maulana Malik Ibrahim Malang
Keywords: heart failure, machine learning, SVM, KKN, Mortality prediction

Abstract

Heart failure is one of the leading causes of mortality worldwide, requiring accurate prediction methods to support early detection and medical decision-making. This study compares the performance of Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) algorithms in predicting mortality among heart failure patients. The dataset used is the Heart Failure Clinical Records Dataset, consisting of 299 patient records with 13 clinical features, including age, ejection fraction, creatinine level, hypertension, anemia, and smoking status. The research process involved data preprocessing, feature standardization, model training, and evaluation using accuracy, precision, recall, F1-score, and balanced accuracy. The results indicate that SVM achieved superior performance with 0.80 accuracy, 0.84 precision, 0.70 recall, and 0.72 F1-score, while KNN reached only 0.68 accuracy and 0.52 F1-score. These findings demonstrate that SVM is more reliable in detecting mortality risk in heart failure patients, especially under imbalanced data conditions. This research provides valuable insights for the development of machine learning-based medical decision support systems, enabling healthcare professionals to perform earlier and more targeted interventions.

Downloads

Download data is not yet available.

References

Adi, S., & Wintarti, A. (2022). Komparasi Metode Support Vector Machine (Svm), K-Nearest Neighbors (Knn), Dan Random Forest (Rf) Untuk Prediksi Penyakit Gagal Jantung. MATHunesa: Jurnal Ilmiah Matematika, 10(2), 258–268. https://doi.org/10.26740/mathunesa.v10n2.p258-268

Assegie, T. A. (2021). Heart disease prediction model with k-nearest neighbor algorithm. International Journal of Informatics and Communication Technology (IJ-ICT), 10(3), 225. https://doi.org/10.11591/ijict.v10i3.pp225-230

Iacobescu, P., Marina, V., Anghel, C., & Anghele, A. D. (2024). Evaluating Binary Classifiers for Cardiovascular Disease Prediction: Enhancing Early Diagnostic Capabilities. Journal of Cardiovascular Development and Disease, 11(12), 1–17. https://doi.org/10.3390/jcdd11120396

jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm. Procedia Technology, 10, 85–94. https://doi.org/10.1016/j.protcy.2013.12.340

Maulidan, M. I., Gunawan, G., & Fajar, M. Y. (2023). Perbandingan Algoritma K-Nearest Neighbor, Greedy dan Brute Force dalam Menentukan Rute Pengiriman Barang. Bandung Conference Series: Mathematics, 3(1), 35–43. https://doi.org/10.29313/bcsm.v3i1.6403

Nuraeni, N., & Faisal, M. (2025). Classification of sleep disorders using support vector machine. 4(1). https://doi.org/10.22219/kinetik.v10i1.2054

Rahmah, M. (2025). Analisis Sentimen Berbasis Aspek Terhadap Ulasan Pengguna di Treaveloka Menggunakan Metode Support Vector Machine.

Romadhon, M. R., Faisal, M., & Imamudin, M. (2023). Improving The Performance of the K-Nearest Neighbor Algorithm in the Selection of KIP Scholarship Recipients. Jurnal Riset Informatika, 5(4), 465–470. https://doi.org/10.34288/jri.v5i4.575

Souza, V. S., & Lima, D. A. (2025). Cardiac Disease Diagnosis Using K-Nearest Neighbor Algorithm: A Study on Heart Failure Clinical Records Dataset. Artificial Intelligence and Applications, 3(1), 56–71. https://doi.org/10.47852/bonviewAIA42022045

PlumX Metrics

Published
2025-10-29
How to Cite
Maghfiroh, S. N. (2025). Analisis prediksi mortalitas pada pasien gagal jantung menggunakan perbandingan algoritma support vector machine dan k-nearest neighbors. Maliki Interdisciplinary Journal, 3(12), 726-737. Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/18544
Section
Articles