Implementasi grafik pengendali Multivariate Exponentially Weighted Moving Average (MEWMA) pada pengendalian kualitas proses produksi gula

Studi kasus PT PG Rajawali I Kabupaten Malang

  • Mutimatul Fadlilah Program Studi Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
Keywords: MEWMA, quality control, white crystal sugar, control chart, multivariate

Abstract

This study discusses the application of the Multivariate Exponentially Weighted Moving Average (MEWMA) control chart in monitoring the quality of white crystal sugar (GKP) production at PT PG Rajawali I, Malang Regency. GKP is one of the strategic commodities in Indonesia whose demand continues to increase, making quality control an essential aspect to ensure that products meet both national standards and consumer needs. In this research, quality control was carried out by analyzing three key quality characteristics, namely moisture content, grain specific gravity, and solution color (ICUMSA). The research employed a quantitative approach using secondary data obtained from the Quality Assurance division of PT PG Rajawali I during the milling period from May 16 to July 20, 2025. The analysis included a multivariate normality test, correlation analysis among variables, and the construction of MEWMA control charts with various weighting factors (λ). The results showed that all MEWMA charts indicated out-of-control signals, which reflects the presence of variation in the production process. The optimal weighting factor was identified at λ = 0.1, as it was the most sensitive in detecting small shifts in the process mean. These findings suggest that production stages such as evaporation, cooking, and centrifugation significantly affect sugar quality. Thus, the implementation of the MEWMA chart proved to be effective as an early-warning statistical tool to detect deviations, reduce product defects, and improve the efficiency of white crystal sugar production.

Downloads

Download data is not yet available.

References

Andini, E., Sudarno, S., & Rahmawati, R. (2021). PENERAPAN METODE PENGENDALIAN KUALITAS MEWMA BERDASARKAN ARL DENGAN PENDEKATAN RANTAI MARKOV (Studi Kasus: Batik Semarang 16, Meteseh). Jurnal Gaussian, 10(1), 125–135. https://doi.org/10.14710/j.gauss.v10i1.30939

Fahlevi, R., Yasin, H., & Ispriyanti, D. (2020). KOMPUTASI METODE MULTIVARIATE EXPONENTIALLY WEIGHTED MOVING AVERAGE (MEWMA) UNTUK PENGENDALIAN KUALITAS PROSES PRODUKSI MENGGUNAKAN GUI MATLAB (STUDI KASUS: PT. Pismatex Textile Industry Pekalongan). Jurnal Gaussian, 9(3), 283–291. https://doi.org/10.14710/j.gauss.v9i3.28908

FAO. (2022). OECD-FAO Agricultural Outlook - OECD-FAO Agricultural Outlook. In OECD-FAO Agricultural Outlook 2021–2030. https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2023-2032_08801ab7-en%0Ahttps://www.agri-outlook.org/

Irsyad, T., Wuryandini, E., Yunus, M., & Hadi, D. P. (2020). Analisis Keaktifan Mahasiswa dalam Proses Pembelajaran Statistika Mulitvariat. Jurnal Pendidikan Ekonomi Undiksha, 12(1), 89. https://doi.org/10.23887/jjpe.v12i1.24294

Jannah, M., Ramadhani, E., & Siregar, L. R. (2023). Penerapan Bagan Kendali MEWMA-MEWMV pada Pengendalian Kualitas Lulusan Prodi Statistika FMIPA Universitas Syiah Kuala. Inferensi, 6(1), 73. https://doi.org/10.12962/j27213862.v6i1.14457

Montgomery, D. C. (2013). Introduction to Statistical Quality Control (7th ed.). NJ: John Wiley & Sons.

Pratama, D. S. (2023). Penerapan grafik pengendali MEWMA dengan model time series dalam pengendalian kualitas produksi gula kristal putih (Studi kasus: PG Madukismo Yogyakarta). http://etheses.uin-malang.ac.id/51791/

Pratama, D. S., & Rozi, F. (2024). Implementation of MEWMA chart using time series model for monitoring the white crystal sugar quality. BAREKENG: Journal of Mathematics and Its Applications, 18(2), 809–820. https://repository.uin-malang.ac.id/19405/

Putri, R. S. W. (2012). The effect of sea water abrasion on concrete with sugar based additives in terms of specific gravity, compressive strength, and porosity.

Rozi, F. (2016). Konstruksi grafik pengendali EWMA menggunakan teknik transformasi fuzzy & fuzzy rules. Research Report. Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. https://repository.uin-malang.ac.id/2887/

Rozi, F. (2012, November 3). Aplikasi grafik pengendali fuzzy multinomial pada pengendalian kualitas proses di industri jasa. Seminar Nasional Matematika dan Terapan (SNMTT), Medan, Indonesia. https://repository.uin-malang.ac.id/123/

Rofikoh, B., & Rozi, F. (2011). Kajian grafik pengendali dan analisis kemampuan proses statistik berdistribusi gamma pada produksi air PDAM. In Proceeding 2nd National Conference on Green Technology: Eco-technology for Sustainable Living (pp. F1–F4). Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim Malang. ISBN: 978-602-97320-2-3. https://repository.uin-malang.ac.id/271/

Sari, R. S. (2024). Penentuan Warna Pada Gula Kristal Rafinasi Dengan Metode Icumsa Untuk Jenis Gula R1 Dan R2 Pada Pt. Xyz. Jurnal Teknologi Pertanian, 13(1), 20–26. https://doi.org/10.32520/jtp.v13i1.3177

Wilberta, N., Sonya, N. T., & Lydia, S. H. R. (2021). ANALISIS KANDUNGAN GULA REDUKSI PADA GULA SEMUT DARI NIRA AREN YANG DIPENGARUHI pH DAN KADAR AIR. BIOEDUKASI (Jurnal Pendidikan Biologi), 12(1), 101. https://doi.org/10.24127/bioedukasi.v12i1.3760

PlumX Metrics

Published
2025-10-22
How to Cite
Fadlilah, M. (2025). Implementasi grafik pengendali Multivariate Exponentially Weighted Moving Average (MEWMA) pada pengendalian kualitas proses produksi gula. Maliki Interdisciplinary Journal, 3(11), 891-899. Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/18718
Section
Articles