Matematika di balik fenomena alam
Dari Fibonacci hingga Fraktal
Abstract
Mathematics plays a vital role in understanding the universe. This article aims to uncover how mathematical concepts such as the Fibonacci sequence and Fractals are closely related to the fabric of life and the environment. The Fibonacci sequence, discovered by Leonardo Fibonacci in the 13th century, is present in many forms in nature, such as sunflower patterns, snail shell spirals, and crystal structures. On the other hand, the concept of Fractals, introduced by Benoit Mandelbrot in 1975, helps explain complex structures that repeat themselves at various scales, such as snowflakes, tree bark, mountain shapes, and coastlines. The mathematical properties of the Fibonacci sequence and Fractals provide deep insights into how these patterns form and evolve in nature, demonstrating the close connection between mathematics and nature.
Downloads
References
Alghar, M. Z., Walidah, N. Z., & Marhayati, M. (2023). Ethnomathematics: The exploration of fractal geometry in Tian Ti Pagoda using the Lindenmayer system. Alifmatika: Jurnal Pendidikan Dan Pembelajaran Matematika, 5(1), 57–69. https://doi.org/10.35316/alifmatika.2023.v5i1.57-69
Fransiska, B., Nurhasanah, N., & Adriat, R. (2020). Perhitungan Panjang Garis Pantai Kota Singkawang Menggunakan Dimensi Fraktal. Prisma Fisika, 8(3), 216. https://doi.org/10.26418/pf.v8i3.43762
Grigas, A. (2013). The Fibonacci Sequence: Its History, Significance, and Manifestations in Nature. Liberty University.
Juhari, J. (2019). The Study Geometry Fractals Designed on Batik Motives. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 6(1), 34–39. https://doi.org/10.18860/ca.v6i1.8081
Mandey, J., Waani, J., & Sangkertadi, S. (2016). Penerapan Fraktal Pada Desain Arsitektur Apartemen. Jurnal Arsitektur DASENG, 5(1), 132–143.
Minarova, N. (2014). The Fibonacci Sequence: Nature’s Little Secret. CRIS - Bulletin of the Centre for Research and Interdisciplinary Study, 2014(1), 7–17. https://doi.org/10.2478/cris-2014-0001
Orhani, S. (2019). Fibonacci Numbers as a Natural Phenomenon. International Jurnal Of Scientific Research And Innovative Studies, 1(July), 1–7.
Sekawati, L. (2012). Teknik Penggambaran Bentuk dan Citra Alamiah Berbasis Dimensi Fraktal. 13512029, 54.
Copyright (c) 2024 Ita Nuryanawati

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



