Pemodelan matematika dalam epidemiologi

Analisis dinamika dan penyebaran penyakit menular

  • Naura Deviyanti Nivia Putri Program Studi Matematika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
Keywords: mathematical modelling, epidemiology, infectious diseases, SIR model, simulation

Abstract

This abstract provides an overview of the use of mathematical models in understanding the dynamics of infectious disease spread. The article discusses the basic SIR (Susceptible-Infectious-Recovered) model and its variations, outlining theoretical foundations and applications to several well-known epidemics. Mathematical approaches are used to predict and control disease spread, offering valuable insights for public health planning. The study also includes the use of computer simulations and empirical data for model validation.

Downloads

Download data is not yet available.

References

Al Fajri, et al. (2022). Ma’arif Journal of Education Madrasah Innovation and Aswaja Studies. Vol. 1(1) PP. 1-11

Anderson R. M. & May R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press.

Brauer F., Castillo-Chavez C., & Feng Z. (2019). Mathematical Models in Epidemiology. Springer.

Diekmann O., Heesterbeek J. A. P., & Britton T. (2013). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press.

Hethcote H. W. (2000). "The Mathematics of Infectious Diseases". SIAM Review, 42(4), 599-653.

Kermack W. O. & McKendrick A. G. (1927). "A Contribution to the Mathematical Theory of Epidemics". Proceedings of the Royal Society of London. Series A Containing Papers of a Mathematical and Physical Character.

Keeling M. J. & Rohani P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.

Kucharski A. J. (2020). The Rules of Contagion: Why Things Spread - and Why They Stop. Basic Books.

Lloyd A. L. (2004). "Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods". Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1534), 989-994.

Murray J. D. (2002). Mathematical Biology I: An Introduction. Springer.

Siettos C. I. & Russo L. (2013). "Mathematical modeling of infectious disease dynamics". Virulence, 4(4), 295-306.

Van den Driessche P., & Watmough J. (2002). "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission". Mathematical Biosciences, 180, 29-48.

PlumX Metrics

Published
2024-11-30
How to Cite
Putri, N. (2024). Pemodelan matematika dalam epidemiologi. Maliki Interdisciplinary Journal, 2(11). Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/8446
Section
Articles