Klasifikasi kebutuhan fungsional dan non fungsional dalam pengembangan perangkat lunak e-learning

  • Nenden Nuraeni Program Studi Teknik Informatika, Universitas Islam Negeri Maulana Malik Ibrahim Malang
Keywords: classification, e-learning, naive bayes, rapidminer, user reuirement

Abstract

In education, technology has become an integral part of human life. Utilizing technology in the form of e-learning platforms allows access to learning flexibly and online. Therefore, this research aims to develop a better e-learning platform for the needs of users in the field of education. The focus of this research is how to facilitate developers in the software design process by using User Requirements and providing analysis as the basis for e-learning software development. The method used is Naive Bayes by using the Rapidminer data analysis tool. Classification of user requirements involves identifying, grouping, and evaluating functional and non-functional requirements. The evaluation results show that the built model performs well, supported by 88.89% accuracy and high precision. The model can predict with good accuracy and has high precision in predicting non-functional classes. In this study, 50 data sets consist of functional and nonfunctional data. The data is divided into two subsets: 28% for training data and 72% for testing data. This division is important to ensure fair representation in model analysis and testing. This helps to get a more accurate picture of the model's ability and reliability in classifying functional and nonfunctional data.

Downloads

Download data is not yet available.

References

Budake, R. D., Bhoite, S. D., & Kharade, K. G. (2024). Machine learning-based identification as well as classification of functional and non-functional requirements. https://doi.org/10.1007/978-981-99-6690-5_38

Caroline, J. E. F., Parmar, P., Tiwari, S., Dixit, A., & Gupta, A. (2019). Accuracy prediction using analysis methods and F-measures. Journal of Physics: Conference Series, 1362(1), 012040. https://doi.org/10.1088/1742-6596/1362/1/012040

Diantoro, A., & Santoso, I. B. (2017). Eggs fertilities detection system on the image of kampung chicken egg using naive bayes classifier algorithm. MATICS, 9(2), 53. https://doi.org/10.18860/mat.v9i2.4198

Kong, W. E., Haw, S.-C., Palanichamy, N., & Rahman, S. H. A. (2024). An e-learning recommendation system framework. International Journal on Advanced Science, Engineering and Information Technology, 14(1), 10–19. https://doi.org/10.18517/ijaseit.14.1.19043

Kumar, R., Krishna Goswami, B., Motiram Mhatre, S., & Agrawal, S. (2024). Naive bayes in focus: A thorough examination of its algorithmic foundations and use cases. International Journal of Innovative Science and Research Technology (IJISRT), 2078–2081. https://doi.org/10.38124/ijisrt/IJISRT24MAY1438

Li, H. (2024). The naïve bayes method. In Machine Learning Methods (pp. 67–75). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3917-6_4

Markoulidakis, I., & Markoulidakis, G. (2024). Probabilistic confusion matrix: A novel method for machine learning algorithm generalized performance analysis. Technologies, 12(7), 113. https://doi.org/10.3390/technologies12070113

Rahayu, S., & Yamasari, Y. (2024). Klasifikasi penyakit stroke dengan metode Support Vector Machine (SVM). Journal of Informatics and Computer Science, 05.

Riehl, K., Neu nteufel, M., & Hemberg, M. (2023). Hierarchical confusion matrix for classification performance evaluation. Journal of the Royal Statistical Society Series C: Applied Statistics, 72(5), 1394–1412. https://doi.org/10.1093/jrsssc/qlad057

Sani, J., Kamal, M. M., Biswas, T. K., Chowdhury, S., Roy, S., & Sarwar, S. (2024). Technologies used in education. International Journal For Multidisciplinary Research, 6(3). https://doi.org/10.36948/ijfmr.2024.v06i03.22020

Santoso, I. B. (2015). Deteksi non-RTH(Ruang terbuka hijau) Kota Malang berbasis citra google earth dengan menggunakan naïve bayes classifier. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi, 7(2), 59–64.

Senan, S., & Tasci, S. K. (2024). A comprehensive analysis of data mining tools for biomedical data classification. https://doi.org/10.4018/979-8-3693-1062-5.ch012

Serwornoo, M. Y. W., Danso, S., Azanu, B., Semarco, S. K. M., & Aidoo, E. A. K. (2024). Use of digital platforms among university students: A systematic literature review. Qeios. https://doi.org/10.32388/SQKGT5.2

Veziroğlu, M., Veziroğlu, E., & Bucak, İ. Ö. (2024). Performance comparison between naive bayes and machine learning algorithms for news classification. In Bayesian Inference - Recent Trends. IntechOpen. https://doi.org/10.5772/intechopen.1002778

Wienand, M., Wulfert, T., & Hoang, H. (2024). Design principles for e-learning platforms featuring higher-education students’ enterprise systems end-user training. Discover Education, 3(1), 82. https://doi.org/10.1007/s44217-024-00165-z

Zahri, M. H., Sunge, A. S., & Zy, A. T. (2024). Analysis of product sales in the application of data mining with naive bayes classification. Journal of Computer Networks, Architecture and High Performance Computing, 6(3), 1213–1223. https://doi.org/10.47709/cnahpc.v6i3.4255

Zulpukarova, D. I., Abdukaimova, A. Z., & Alieva, K. U. (2024). The use of online educational platforms in teaching. Bulletin of Issyk-Kul University. https://doi.org/10.69722/1694-8211-2024-56-66-73

PlumX Metrics

Published
2024-12-31
How to Cite
Nuraeni, N. (2024). Klasifikasi kebutuhan fungsional dan non fungsional dalam pengembangan perangkat lunak e-learning. Maliki Interdisciplinary Journal, 2(12), 1445-1457. Retrieved from https://urj.uin-malang.ac.id/index.php/mij/article/view/11156
Section
Articles