Klasifikasi dengan metode Support Vector Machine (SVM) dalam menentukan kualitas air minum
Abstract
The increasingly limited availability of clean water is becoming a serious global problem. The clean water crisis significantly impacts global health, including deaths from contaminated water. The time-consuming process of water testing is a significant obstacle in determining water quality. This research uses the Support Vector Machine (SVM) method for water quality classification. The data used comes from a collection of various compounds and elements used in water quality testing. This research involves the stages of data collection, data cleaning, data labeling, and data division into training data and test data with three test scenarios. Model evaluation was done by measuring accuracy, precision, and recall. The results showed that SVM with RBF kernel best predicted drinking water quality with 95% accuracy. These findings contribute to developing more accurate and efficient water quality testing methods
Downloads
References
Aldossary, Y., Alhaddad, S., Ebrahim, M., & Zeki, A. M. (2022). Comparing K-Nearest Neighbors, Random Forest and Naïve Bayes Models to Classify Fetal Health Using Resampling Methods. 2022 International Conference on Data Analytics for Business and Industry (ICDABI), 250–254. https://doi.org/10.1109/ICDABI56818.2022.10041489
Alijanzadeh Maliji, B., Babayeemehr, A., Mehrabani, S., & Aghajanpour, F. (2023). Role of the World Health Organization in Management of Gastrointestinal Diseases Caused by Contaminated Water in Children in the Middle East: A Review Article. Journal of Pediatrics Review, 11(1), 59–66. https://doi.org/10.32598/jpr.11.1.285.2
Cunningham, S. A., & Muir, J. A. (2023). Data Cleaning. In The Cambridge Handbook of Research Methods and Statistics for the Social and Behavioral Sciences (pp. 443–467). Cambridge University Press. https://doi.org/10.1017/9781009010054.022
Devgade, P., & Patil, M. (2023). Water, sanitation, and hygiene assessment at household level in the community: A narrative review. Journal of Datta Meghe Institute of Medical Sciences University, 18(1), 173. https://doi.org/10.4103/jdmimsu.jdmimsu_453_22
Dhaswadikar Usha Sitaram. (2022). Study of the physio-chemical parameters for testing water: A review. World Journal of Advanced Research and Reviews, 14(3), 570–575. https://doi.org/10.30574/wjarr.2022.14.3.0600
Harju, M., & Mesaros, A. (2023). Evaluating Classification Systems Against Soft Labels with Fuzzy Precision and Recall. Detection and Classification of Acoustic Scenes and Events (DCASE), September, 46–50.
Iqbal, E. A. M., Kusumawati, R., & Santoso, I. B. (2023). Hybrid Model Transfer Learning ResNet50 and Support Vector Machine for Face Mask Detection. International Journal of Advances in Data and Information Systems, 4(2), 125–134. https://doi.org/10.25008/ijadis.v4i2.1297 http://repository.uin-malang.ac.id/16448/
Kashtanjeva, A., Vehapi, I., Kurteshi, K., & Paçarizi, M. (2022). Determining the Physico-Chemical and Microbiological Parameters of the Water Quality in the Batllava Lake, Kosovo. Journal of Ecological Engineering, 23(9), 231–240. https://doi.org/10.12911/22998993/151906
Koninck, C., Goetz, V., & Stitou, D. (2023). Theoretical study of a membrane filtration process for water treatment using low temperature solar energy. MATEC Web of Conferences, 379, 08003. https://doi.org/10.1051/matecconf/202337908003
Mardewi, M., Yarkuran, N., Sofyan, S., Aziz, F., & Adriana, A. N. I. (2023). KLASIFIKASI KATEGORI OBAT MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE. Journal Pharmacy and Application of Computer Sciences, 1(1), 27–32. https://doi.org/10.59823/jopacs.v1i1.19
Marten Sahalatua Tumangger, R., & Hidayat, N. (2019). Komparasi Metode Data Mining Support Vector Machine dengan Naive Bayes untuk Klasifikasi Status Kualitas Air (Vol. 3, Issue 10). http://j-ptiik.ub.ac.id
Medyanti, W. A., & Faisal, M. (2023). Early Prediction System for Employee Attrition Company “XYZ” Using Support Vector Machine Algorithm. CESS (Journal of Computer Engineering, System and Science), 8(2), 429. https://doi.org/10.24114/cess.v8i2.46494
Mishra, A., & Tushaus, D. W. (2022). Water Scarcity. In Legal Analytics (pp. 105–116). Chapman and Hall/CRC. https://doi.org/10.1201/9781003215998-9
Nuraeni, N., & Faisal, M. (2025). Classification of Sleep Disorders Using Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v10i1.2054
Parulian, N. N., & Ludäscher, B. (2023). Trust the Process: Analyzing Prospective Provenance for Data Cleaning. Companion Proceedings of the ACM Web Conference 2023, 1513–1523. https://doi.org/10.1145/3543873.3587558
Rahayu, S., & Yamasari, Y. (2024). Klasifikasi Penyakit Stroke dengan Metode Support Vector Machine (SVM). Journal of Informatics and Computer Science, 05.
Sadeli, A. F., & Lawanda, I. I. (2023). Recall, Precision, and F-Measure for Evaluating Information Retrieval System in Electronic Document Management Systems (EDMS). Khizanah Al-Hikmah : Jurnal Ilmu Perpustakaan, Informasi, Dan Kearsipan, 11(2), 231–241. https://doi.org/10.24252/kah.v11i2a8
Santoso, I. B., Adrianto, Y., Sensusiati, A. D., Wulandari, D. P., & Purnama, I. K. E. (2022). Ensemble Convolutional Neural Networks With Support Vector Machine for Epilepsy Classification Based on Multi-Sequence of Magnetic Resonance Images. IEEE Access, 10, 32034–32048. https://doi.org/10.1109/ACCESS.2022.3159923
Shemer, H., Wald, S., & Semiat, R. (2023). Challenges and Solutions for Global Water Scarcity. Membranes, 13(6), 612. https://doi.org/10.3390/membranes13060612
Sudin, A., Salmin, M., Fhadli, M., & Mario Mamonto, A. (2023). KLASIFIKASI KELAYAKAN AIR MINUM BAGI TUBUH MANUSIA MENGGUNAKAN METODE SUPPORT VEKTOR MACHINE DENGAN BACKWARD ELIMINATION. In Jurnal Jaringan dan Teknologi Informasi (Vol. 3, Issue 1).
Tanega, M. C., Fajardo, A., & Limbago, J. S. (2023). Analysis of Water Quality for Taal Lake Using Machine Learning Classification Algorithm. 2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE), 397–402. https://doi.org/10.1109/JCSSE58229.2023.10202046
Tangkelayuk, A. (2022). Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 9(2), 1109–1119. https://doi.org/10.35957/jatisi.v9i2.2048
Tatarov, P. (2022). Water in Biological and Food Systems. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(2). https://doi.org/10.15414/ainhlq.2022.0028
Zhdanovskaya, A., Baidakova, D., & Ustalov, D. (2023). Data Labeling for Machine Learning Engineers: Project-Based Curriculum and Data-Centric Competitions. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 15886–15893. https://doi.org/10.1609/aaai.v37i13.26886
Zhou, P., Li, Z., Snowling, S., Goel, R., & Zhang, Q. (2019). Short-Term Wastewater Influent Prediction Based on Random Forests and Multi-Layer Perceptron. Journal of Environmental Informatics Letters. https://doi.org/10.3808/jeil.201900010
Copyright (c) 2025 Nenden Nuraeni

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.



